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The escape time from the lower energy state of the bistable nonlinear driven microcavity oscillator have
been obtained analitically by means of quasiclassical kinetic equation in the basis of quasienergy states. The
dependence of the escape time on the intensity of the external field is in rather good agreement with the results
of numerical experiments. Moreover, the numerical dependencies of escape time on damping parameter reveal
smooth crossover from exponential to diffusive like behavior.
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Nonlinear phenomena are well known as an infinite
source of intriguing physics. Optical nonlinearity usu-
ally originates from peculiarities of matter susceptibility
and is strongly increased near the resonance frequencies,
e.g. exciton resonance in semiconductors. The nonlin-
ear effects for given external pump power are strongly
increased in semiconductor microcavities [1] because in
these resonant systems the quantum well is located close
to the maxima of resonant photon mode. Provided that
the frequency of the cavity resonance is close to the fre-
quency of the quantum well exciton and their coupling
constant is larger than the dephasing rate, two polariton
states (upper and lower) are formed.

In case the external pump frequency exceeds
the lower polariton branch (LP) more than the LP-
linewidth, the polariton field amplitude can show a
bi-stable behavior. With the increase of pump inten-
sity the low density state disappears and the system
abruptly jumps to a high density state. Such a jump
is accompanied by a strong modification of parametric
scattering patterns and pump transmission [2, 3].

An important peculiarity of the cavity polaritons is
the possibility of multistability and polarization hystere-
sis of the coherently driven macro-occupied polariton
mode [4]. The multistability arises due to polarization-
dependent polariton-polariton interactions and can be
revealed in polarization resolved transmission and pho-
toluminescence experiments. With increasing external
coherent pumping the driven macroscopically occupied
polariton mode shows strong and sudden jumps from
one multistable state to another. The existence of dif-
ferent polarization-intensity regimes, corresponding to
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the same external pumping, is expected to manifest it-
self in strong spatial and/or temporal fluctuations of
the driven polariton wave for driving parameters within
multi-stability range.

The presumable strong dependence of transition
probabilities on the driving parameters near the stabil-
ity edge opens a challenging area of controlling these
processes. As in any phase transition regime initial fluc-
tuations at the time of transformation can be ’frozen’ in
the final state spatial distribution function and the latter
can be considered as a fingerprint of the former made
within a very short time — typically in the picosecond
range.

The behavior of the nonlinear oscillator in quasiclas-
sical limit can be successfully analyzed in qausienergy
state representation [5—7]. The effective hamiltonian
in rotating wave approximation for slow varying ampli-
tude can be written as

H=—-Ad'a+ %(aTa)2 — f(a' +a), (1)

where a is the operator of polariton amplitude, A =
= h(w;—wrp) is the energy detuning between the driving
laser field quanta Aw; and the polariton resonance energy
hwr p, a is a polariton nonlinearity constant and f is the
effective driving field amplitude.

Operators a, a! correspond to the classical canoni-
cal slow variables a, a* and the eigenvalues of H cor-
respond to the quasienergy F in the classical approach.
The hamiltonian (1) results in the following equation of
motion for slow varying amplitude

ih% = —Aa + aala]® - f. (2)
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Fig.1. Typical phase portrait of numerical experiment

Transformation to dimensionless variables a A/f —
— a yields

i% = —a+falal® -1, T:t%. (3)

The corresponding dimensionless hamiltonian takes
the form

2

H=—-dla+ g(aJ’a)2 —(a+d"), B= %. (4)

This dimensionless form of the effective hamiltonian
depends on a single parameter 8 that defines the shape
of phase trajectories and the probabilities to find the
oscillator in different stable quasienergy states.

The nonlinear driven oscillator phase diagram in
space (Re (a), Im (a)) is depicted in Fig.1. Each phase
trajectory corresponds to a particular quasienergy E
and T'(E) — the period of a particle motion along the
corresponding trajectory [8]. The quasienergy is the in-
tegral of motion of the nonlinear driven oscillator. It

is conserved if dissipation is neglected. Stable states la-
belled 1 (with smaller oscillation amplitude) and 2 (with
lager amplitude) are separated by unstable state laying
on phase trajectory called separatrice. E;, Es, Eg are
the quasienergy values for each trajectory.

Interaction with the thermal bath leads to the ap-
pearance of dissipation and fluctuation transitions be-
tween the stable states of the nonlinear oscillator. The
classical distribution function of different quasienergy
states can be obtained by solving the Fokker-Plank equa-
tion derived in [7]. Fluctuation transitions between the
stable states can lead to the appearance of enhanced
probability to find the oscillator in stable state 2 (with
lager oscillation amplitude).

To obtain the probability distribution function, we
consider the following interaction with the environment

Vine = AD_ (8] + b:)(af + a), (5)
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where b; describe the i-th thermal bath oscillator (fre-
quency w;) linearly connected with the driven oscillator
with the coupling constant A. The thermal bath oscilla-
tors are supposed to be in equilibrium. After transfor-
mation to slow variables

51‘ + Ez — b}'eith + biefiwlt (6)

we can use the resonant approximation and define the
interaction hamiltonian as

~ N

V(t) = f(t)at + F(v)a, (7)

where

i

2 " Lo (8)
f(6) = A3 b1 (1), Bilt) = bi(0)eiwi—ent

and w; is the set of thermal bath oscillator frequencies.
The quantum kinetic equation for a driven nonlinear os-
cillator can be obtained by the Keldysh diagram tech-
nique [9]. The interaction with the thermal bath is sup-
posed to be weak enough. This means, that in quasi-
classical limit

Ey — Ep_y = hwy > 9, 9)

where FEj are the quasienergy levels characterized by
large integer quantum numbers (k) and ¥ is the width
of the quasienergy levels.

In the classical limit the quantum Kkinetic equation
transforms to an one-dimensional Fokker-Plank equa-
tion describing the classical diffusion in quasienergy
space. So we consider the basis of quasienergy states
with eigenvalues Fj, determined by hamiltonian (4). Us-
ing this basis, the ensemble of the noninteracting driven
nonlinear oscillators can be described by the effective
hamiltonian

Ho = ZEkc;'eck, (10)
k

where ¢, (c,t) is the operator which annihilates (creates)

the oscillator in quasienergy state Ej, and
(clew) = n(Ey, 1) (11)

is the probability distribution to find the oscillator in
quasienergy state Ej. We also define Vi, arising from
the interaction with the thermal bath in quasi-energy
representation

Vint Z ag k'ff( )ckck’ + a}t k' .f(t)chka (12)
k,k'
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with f as the random force acting in slow variables space.

By means of Keldysh diagram technique we obtain
in selfconsistent quasiclassical limit the kinetic equation
for G .

6

= I (W)Gii (W) — B (w)Grp(w).  (13)
In diagonal approximation G,f, «, satisfies the equation

(13) with

550 = [ WD WG -, a9
Dk<,k’ (w) = A2y {|ak,k: |2(Nwl—w +1)+ |ak:,k|2Nw,+w} ,
(15)

Dk>,k'( ) )‘V{|akk’| Nw: w+|ak’k| ( wz+w+1)}

(16)

where v is the density of states of the thermal bath oscil-
lators and N, is the filling number of w-frequency ther-
mal bath oscillator. The Keldysh Green function G,f,k
is defined in usual way:

G',f,k (w) =

If the width of quasienergy levels is much smaller than
the difference between quasienergies, G,f’k (w) simplifies
to

—27rink(w)ImGkR,k(w). (17

Gp(w) = —2ming(w)é(w — Ey). (18)

The same expressions with substitution ng by (1 — ng)
are valid for G, (w). If Ep(2) — Ex < Epa(2), where
Ejy(2) corresponds in classical limit to E; and Es, a
rather large number of quasienergy levels close to Eyy(a)
are exited and the probabilities ny are small. Thus, in
quasiclassical limit we retain only linear ng-terms in the
kinetic equation. We obtain from (13)—(18) the kinetic
equations for ny — the probability to find the system in
quasienergy state Ej, — by integration over w neglecting
the broadening of quasienergy levels.

6nk 2
W = E Zle,k'nkl — Dl?,k’nk' (19)
k!

In quasiclassical approximation (19) can be transformed
to a Fokker-Plank equation in each region of phase-space
1 and 2 with quasienergy depending coefficients. The
matrix elements ay i are quickly changing away from
the diagonal k = k' with increasing of ¢ = k — k' as
compared to their slow variations with k along the diag-
onal in the same region of phase space i.e. |agxtq|> ~
~ |ag—qx|* for g¢/k < 1.
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The right hand side of the equation (19) can be
expanded in series up to ¢ terms [10] and the quasi-
classical approximation for matrix elements [11] can be
used:

> lakkiql’a = (20)

q
2
(2rw(Eyg)) / a(t “"(E")qtdt

Zq

= ! T(E") o ¥ * . d —
~ 2iw(E)T(Ex) /0 (a(t)a*(t) — a*(t)a(t))dt =
1 . da
=% ) ada da,

Z |ak,k+q|2q2 =

q
1 OH  0H ,
B 2lw2(Ek)T(Ek) fC(E ) Oa 3 % 60;* da’. (21)

In these expressions T(Ey) and w(E}) are the pe-
riod and frequency of motion along the phase trajectory
C with quasienergy Ej. In addition, we should take
into account that in quasi-classical limit Ey — Ep_q =
= hw(Ek)q, i.e. 6Ek/ak = hw(Ek). If B, — Ep < hwl,
we can consider that N,,+, ~ N,,. Thus, the kinetic
equation (19) reduces to an one dimensional Fokker-
Plank equation in each region of phase-space for n; =
=n;(E,T):

% 2”6% (ﬂK( )ni + QD(E )aaE > (22)

where 1 = 1,2.
In (22) K and D are determined by integrals along
the phase trajectories with particular quasienergy value
- closed curve C(FE) in dimensionless variables:

1
K(E) = 77{ ada* — a*da,
1 OH OH (23)
D(E) = 3wy fi(E) a9t 500
with
)\2
Q = (2Nwt + 1)1977, 9= A (24)

as the random force intensity. The coefficient 7 arises
from transition to dimensionless variables (a, a*):

n=A%/f2 (25)

The stationary solution of (22) for the probability to
find the system in quasienergy state E in the vicinity of
stable points can be written as

9 [F K15 (E")
niz)(E) = Aj(2) exp l—a / e Ll

, (26
Ey(z) D3 (E') (26)

and the continuity of the distribution function at the
saddle point quasienergy value yields

n1(Es) = na(Eg). (27)

The relative population of the two stable states of the
driven nonlinear oscillator can be easily obtained from

(26) and (27)

B g K2 (E)
xp | — dE
ni(Br) _ Ar _ © pl Q D»(E") (28)
’nz(EQ) Ag 9 dEI Kl( l)
exp Q Dy (B

To calculate the escape rates from the stable state 1
and 2 it is helpful to transform the Fokker-Plank equa-
tion into a Schrudinger equation. Using the substitution

exp l / dE’

we obtain the Schriidinger equation for F' with the ef-
fective potential determined by kinetic coefficients K
and D.

ni(E,t) = F(E,t),

(29)

QOF _ o’ oF + V(E)F, (30)

K? 2K'D-D'KQ
" 2D 9
The escape rate from the each stable state corresponds
now to the tunnelling transition amplitude from the sta-
ble point Ey(s) to Es. The escape time from state 1 can
be evaluated as

V(E) = (31)

1~ (2m9) 7t
2
9 [Fs K?2 2K'D-D'KQ
X exp Q dEI ﬁ TE . (32)

The classical analog of equation (32) was derived in [7]
staring from the classical stochastic equations of motion
for slow variables a and a* and averaging over T'(E) the
corresponding two dimensional Fokker-Plank equation.

In the general case, the random noise can arise not
only from the interaction with the thermal bath, but
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also because of inevitable fluctuations of the pump. As
a result, the damping coefficient can be negligibly small
while the noise intensity remains finite. The opposite sit-
uation with a decay time larger than the noise intensity
is also possible for the studied polariton system due to
the short polariton lifetime. Therefore we consider here
noise and decay time as two independent parameters.

In the case of zero damping, the oscillator probability
distribution is determined by a diffusion equation with
quasienergy dependent diffusion coefficient. The time
dependent distribution function can be easily obtained
with exponential accuracy

1 E dE
n(E,t) ~ exp 10 l . \/ﬁ (33)

and the mean escape time from the stable state with the
quasienergy E; can be evaluated as

1 Bs dE
TNElEl 7@ . (34)

We compare the analytical expressions for the mean es-
cape time 71 with numerical solutions of the following
equation of motion for the slow varying amplitude in the
presence of dissipation ¥ and random noise &:

.da

i— = —a —i%a + Bala|® — 1 + £(7), (35)
dr

(€7(0)¢(7)) = Qd(r), (£(0)¢(r)) =0.  (36)

The averaged inverse escape time from the low ampli-
tude quasi stable state 7 = (7'1-_1)_1 has been calculated
over 100 numerical solutions for each set of parameters
B, 9 and ). The explicit relations between the latter
dimensionless parameters and noise spectral density o2,
pump amplitude (f), pump detuning (A), oscillator de-
phasing () and nonlinearity constant (a) as well as es-
cape time t; and dimensionless time 7, are given below.

_aff oy _
=2 VT @5

2
,6 %%, tlle%. (37)

Figs.2 and 3 show the dependence of 7; on the pa-
rameter 8 and on dumping coefficient 9 for different
noise intensities (). The qualitative features of numer-
ically obtained escape time dependencies on parameter
B are reproduced by analytical expression (33), where
the preexponential factor is not taken into account. The
analytically obtained values of the exponent are of the
order of 10? — 10® (Fig.2), and are large compared to
the ratio between the analytical and numerical values of
IMucema B AT® Tom 86
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Fig.2. Product of dimensionless escape time and dephas-
ing (m19) vs dimensionless noise to dephasing ratio for two
values of parameter 8 = 0.075 and 0.125. Solid lines are
calculated according to Eq.(32) while the dashed lines are
calculated neglecting the second term under the square root
in the same equation. Triangles show the same dependence
obtained from numerical experiments for 71 = (‘rj*l)’1 by
averaging of inverse escape time over 100 random noise
realizations

escape time 7;. Thus, it is reasonable to ascribe this
ratio to preexponential factor which is determined nu-
merically and is absent in analytical expressions (32)
and (34).

Let’s illustrate these results for pump detuning from
resonance A = 1meV and the resonance width v =
0.2meV. The plot in Fig.2 for 8 = 0.125 corresponds to
pump intensity 15% less the upper boundary of bistabil-
ity range (3. = 4/27) and gives 719 ~ 1 for Q/9 ~ 0.2.
Using (37) we get ¥ = t1A/h-v/A = t;y/h and
Q/9 = 0?/§2- AJh- Ay = (ay/R)/f - (A/7)?. This
means the escape time t; =~ F/0.2meVa3ps for the
noise intensity within the resonance linewidth to pump
intensity ratio (o2vy/h)/f? ~ 0.01.

Further, we have investigated numerically the zero
damping diffusive regime of fluctuation transitions of
nonlinear driven oscillator for different noise intensities.
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Fig.3. Escape time (71) vs dimensionless nonlinear para-
meter (3) for dephasing constants ¥ shown in the legend.
Solid lines are calculated according to Eq.(32) where as
markers show 71 = (7_;1)71 obtained from numerical ex-
periments

The values of the escape time given by (34) coincides
with the numerical results shown in Fig.3. The behavior
of 71 in the range of small damping

Q

B K(E)
o, ED(B)

0<d<

(38)

where the exponential accuracy is insufficient, has been
analyzed numerically. The calculated dependencies of

escape time 77 on the damping constant reveal a smooth
crossover from the behavior given by (32) to diffusive
like behavior given by (34), see Fig.3.

In conclusion we want to point out that fluctuation
induced transitions between two stable states of driven
nonlinear cavity polariton oscillator can be analyzed
by means of one-dimensional kinetic equation in quasi-
energy representation. The analytically obtained escape
times from the lower energy stable state are in a good
agreement with the results of numerical experiments for
various system parameters.
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