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In [1 - 4] it is shown, on the basis of the aggregate of experimental
data, that the current instability arising at T = 250 - 350°K in silicon
doped with zinc is due to slow RW [5]. However, the motion of the slow re-
combination wave itself, predicted by the theory [5 - 7], has so far not been
observed experimentally by any one. For rapid RW in compensated germanium,
the time variation of the undamped fluctuation recalls a standing wave [8 -
10]. We report here observation of the motion of the fluctuation in the case
of slow RW in n-type silicon doped with Zn.

The picture of wave motion was reconstructed by analyzing the variation
of the Lissajous figure as a function of the coordinate of a clamped probe.
The sample was connected in series with a battery and a load resistor. The
signal from the load was fed through an amplifier to the input of the hori-
zontal sweep of an oscilloscope. The vertical sweep received the potential
difference between the probe and one of the contacts. Its dc component was
measured with a voltmeter.

The Lissajous figure has frequently a complicated form. In the case of
regular oscillations, a stable figure (inclined line) was produced only when
the probe was in the "passive" part of the sample. It follows directly from
this that the oscillations are not in phase.

For a detailed investigation of the time variation of the fluctuation,
the sample was made to execute sinusoidal oscillations near threshold. It is
clear that when the probe passed through the "active" region, i.e., the re-
gion in which the conductivity oscillates, the phasel) of the Lissajous figure
(ellipse) should change by m. The method whereby the ellipse changes 1its
phase depends on the behavior of the fluctuation. Thus, for example, in the
case of in-phase oscillations, the ellipse should degenerate at a certain point
of the sample intoa horizontal line and change its phase jumpwise by w. 1In
our case, the phase of the ellipse remained unchanged over a large distance
("passive" region) and then, starting with a certain point (xo on Fig. 1) and
up to the contact (cathode), it varied continuously and shifted by w. The
vertical projection of the ellipse changed somewhat in magnitude, but did not
vanish. The circuiting direction of the ellipse was determined by the form of
the spiral trace left by the beam upon displacement of the Lissajous figure on
the oscilloscope screen.

Figure 1 shows 12 successive distributions of the ac component of the
electric field E' in the active region of the sample. The maximum of the
electric-field oscillation amplitude was ~3% of the dc component. The fact
that the Lissajous figure in the entire active region remains an ellipse means
that the oscillations at all points have a harmonic character and differ only
in phase and in amplitude. This can be written in the form

E° (x,t) = f(x)sinlg(x) -wt]. (1)
Here f(x) specifies the amplitude and the argument of the sine function speci-

fies the phase of the oscillations. We put -m < ¢(x) < w. The experimental
data (Fig. 1) enable us to determine f(x) and ¢(x) (see Fig. 2).

!The phase difference between the current and potential of the probe will
be called "phase" for brevity.
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Fig. 2

Fig. 1. Character of time variation of E' in the active region of
sample No. 562a. The scale of E' is indicated on one of the diagrams.
The time direction is downward. The time intervals between arbitrary
neighboring diagrams and between the first and last dlagram are
identical. x is the distance from the anode. The right-hand verti-
cal line represents the cathode. Below - distribution of the dc com-
ponent of the electric field.

Fig. 2. Wave parameters: a - £(x), b - ¢(x).

On the section x¢ < x < 3.6 mm and x 2 3.75 mm, the function ¢(x) is well
approximated by a straight line (see Fig. 2b), i.e., ¢(x) = kx + b (k > 0,
and b depends on the choice of the zero value of the time). This means that
on these sections the undamped fluctuation is a wave traveling with approxi-
mately constant phase velocity v = w/(d¢/dx) = -w/k in the direction of the
electron drift. At x < 3.6 mm, the amplitude of the wave changes little.
The direction of wave motion corresponds to the linear RW theory [5 - 7]. The
phase velocitg is v = 23 cm/sec. At a frequency v = 325 Hz, the wave number
is k = 90 cm™ ', and the wavelength A = 0.07 cm, which agrees in order of mag-
nitude with the value A = 0.027 mm calculated in [2] for an infinite sample.
A comparison with the linear theory i1s justifled, since the amplitude of the
perturbations 1s small and one can expect the parameters of the oscillations
not to differ strongly from the critical values given by linear theory.

On the section 3.6 € x < 3.75 mm, the amplitude of the oscillations is
somewhat larger, and the motion of the wave has a more complicated form. It
is seen from Fig. 2b that the motion can be treated, for example, as a sec-
tion of phase delay, compared with the wave described by the function d(x) =
-kx + b. A representation is also possible in the form of a sufficiently
arbitrary superposition of the waves. Indeed, the function (1) can be repre-
sented in the form of a superposition of two waves (and possibly an arbitrary
number of waves) of the same form
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F(x)sial ¢(x) - wt] = f,(x)sinle (x) - wtl + f,(x)sinle,(x) - wtl], (2)

where ¢1(x) and ¢2(x) can be specified arbitrarily, but such that in the gen-
eral case ¢1(x) # ¢2(x) + mm (m = -1, 0, 1) for all the X under consideration.
f1 and f2 can be obtained from the experimentally known f and ¢ and from the
specified ¢ and ¢,. If we put in our case ¢;(x) = -kx + b and ¢(x) = ¢

(¢ = const), then the motion of the fluctuations in - the entire active region
can be described as a superposition of two waves: a traveling wave f;(x)sin
{(-kx - wt + b) and a standing wave f,(x)sin(c - wt), and on the sections

Xg < X € 3.6 mm and x 2 3.75 mm we have f1(x) = f(x) and f2(x) = 0. The
amplitudes fi1 and f, on the section 3.6 § x < 3.75 mm depend on the choice of
the constant c.

The closest to the experimental conditions is the theoretically con-
sidered case of slow RW in a bounded homogeneous sample with ohmic contacts
[7]. In such a sample, the perturbation in the threshold regime is described
by a wave of the form (1), where ¢(x) = -k'x + b' (k'b' = const, k' > 0).
It was shown above that the experimental ¢(x) dependence is close to such a
form. The observed deviations are apparently the consequence of the inhomo-
genelty of the sample, the non-ohmic character of the contacts, and the finite
values of the perturbation (unlike the premises of the linear theory). For
the same reasons, the character of the function f(x) deviates from the theo-
retical form. The absence of nodes (points where f(x) = 0) inside the active
region corresponds to the fundamental mode of the oscillations [7].

Thus, the character of the motion {(in main outline) and the direction of
the displacement, and also the length of the slow BW in silicon doped with
zinc agree with the RW theory.

The authors are grateful to M.S. Kagan, 1.V. Karpova, and V.M. Kagan for
a valuable discussion of the results.
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