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Let us consider the collision of two compound particles consisting of
identical fermions (two atoms, two atomic nuclei). It has been known for a
long time that the Pauli principle should lead to a strong repulsion between
the particles at short distances, and this is always taken into account, for
example, when choosing phenomenological potentials for the interaction between
the atoms. Repulsion sets in at distances between particles r;, such that
their wave functions begin to overlap. We shall develop below a quantum-
mechanical theory of this effect.

Let the first particle consist of A) fermions, let its internal wave func-
tion be ¢1$p1), let the radius be R;, and let its center of gravity be at the
point r1, p1 denotes the aggregate of (3A; - 3) coordinates describing the
relative motion of the fermoins in the particle. Similar symbols Az, ¢2(B2),
Rz, and r; will be used for the second particle.

The wave function of the colliding particles is written in the form
1 a "
¢ = Q(P)-\/—'ﬁA 2t You (2) $1(3) 6,08 = @(p)w(p). (1)

Here z = (A1A2/A)'/2(%, - T2) is the "reduced" distance between particles,
L the orbital angular momentum of their relative motion, ¢(p) a function de-
scribing the relative motion of the particles. The symbol A in (1) denotes
the antisymmetrization of the expression in the curly brackets over all N =
Al/A;1A,! permutations that transform the fermions from one particle into the
other and vice-versa.

To describe the relative placements of all A = A, + A, fermions of our
system, we have introduced in (1) the vector p in (34 - 3)-dimensional space
of the relative coordinates of the fermions. It is convenient to use a spheri-
cal coordinate system in this space. The aggregate of (3A - 4) angles will be
denoted by 93, and the length p of the vector § is then equal to
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Here r is the coordinate of the i-th fermion, & is the position of the common

center of gravity, and (r? )1/2 is the rms radius of the system. We introduce
analogously the quantities pi1, 21 and p2, Q2 for the first and second parti-
cles.

Since for such a definition of the coordinates we have identically
AA
A
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pl=plepli?= yrit Ayl rl (3)

and since the first two terms are bounded here (approximately r} = 3R%{/5 and

- 3 3
r,2 = —5—A2R2 and p} + p§ = ?(Alel + AzRg) = 0,
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where Ri is the radius of the i-th particle), it follows that

A.A 1/2
p = _lTI) ria if rp> Ry +R,. (4)

This justifies the representation of the wave function of the entire system in
the form (1).

To find the function ®(p), we substitute (1) in the Schrddinger equation
of our system
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where V(ij) is the interaction between the i-th and j-th fermions, m is the
fermion mass, and E is the total energy. Multiplying this equation from the
left by w (p), integrating with respect to dQ+ and using the technique de-

scribed, for example, in [1], we find for @(p) the equation:
hz

D’ + -'L’O'l+ [Vip) - e1®(p)=0, (6)
2m B

where the prime denotes differentiation with respect to p, V(p) is the suitably
averaged interaction between the fermions contained in our particles, € is the
energy of the relative motion of the particles, and

g = p»’A" [dn,IIw{F),I’.. (7)

Using the K-harmonics technique (see [1]), we can show furthermore that

2K _+ 3A=4
const p ™ ; p<<p,

(8)
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Here Km is a certain characteristic number introduced in the K-harmonics pro-
cedure (for fermions of one type with spin 1/2 we have K, = (3A)“/3/4 when
A >> 1), and pe is the value of the coordinate at which the particles "touch"

(see [3])):

A
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Introducing a new function ¢(p) = u='/2¢(p) we obtain in place of (6) the
simple equation

2
- Lzm"’" + [V(p) + Ulp) - €@ = 0, (10)

which has the form of a radial Schrodinger equation for a particle in a fileld.
The potential that has appeared here
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dgscribes the particle repulsion resulting from the Pauli principle. Using
(8), we get

h2
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P —7— ° (11b)

Here JZ = Km + 3(A - 2)/2 is a large number closely connected with the total

kinetic energy A of the fermoins: the expression in the upper line of formula
(11) is none other than the min%mum value of the kinetic energy A of the fer-
moins contalned in the sphere |[§] = »p.

The behavior of U(p) at p = pe¢ can be understood by choosing for u(p)
some convenient interpolation formula, for example

4

x P
- plLt 1) . —_ ‘= 2K + 3A - 4.
" p xv~+x2(L01)’ X = p ’ o= m (12)
°
We then obtain 1mmediately
hZ l‘(L t ]) r (r-2 2T, l)xll (1
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where T = ¢ - 2(L + 1).

In practically all cases Km >> 1, and all the more ¢ >> 1. At not too

large values of L, when I' >> 1, expression (13) can be easily investigated.
It turns out here that formula (lla) is wvalid when p < po[l - (1InT)/T], and
formula (11b) is valid when p > po[1l + (1nT)/T].

If both colliding particles are sufficiently "hard,”" 1.e., they have al-
most define values of p1 and p2 (this corresponds to small fluctuations of the
rms radius), then p and the distance r;; between the particles are uniquely
related by formula (3). Combining (3) with (11) - (13) we then obtain for
the radius of the repelling core

A p2 Inl” .
(r12dcore =Ry +RI PN —— "2 _ |- ‘Ry+R,), (1)

and its value

2

2m p?

Ucore =

(15)

as already mentioned, coincides with the kinetlc energy A of the fermilons

425



contained inside the spherical volume with the radius R = oo//K (pg is cal-
culated with the aid of (9)).

The foregoing analysis shows that two particles made up of fermions of
one type will always repel each other as soon as the distance between them
becomes smaller than their total radius. At not too high collision energies,
the particles will not be able to penetrate into each other at all. In atomic
physics this phenomenon has been known for a long time. In nuclear physics,
an analogous phenomenon should be observed in scattering of particles by each
other.

[1] A. Baz' and M. Zhukov, Yad. Fiz. 11, 779 (1970) [Sov. J. Nucl. Phys. 11,
435 (1970)1.

NOTE

For technical reasons, the balance of the Russian version of Volume 14, Number 11
will be puwblished in Volume 14, Number 12 of the translation.
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