THE TREIMAN-YANG CRITERION FOR PARTICLES WITH SPIN
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If a reaction proceeds via exchange of a zero-spin particle then, as is well known, its
pole character can be verified with the aid of the Treiman-Yang criterion [1]. It was shown
earlier [2] that for nonrelativistic particles there exist a number of cases when the Treiman-
Yang criterion is applicable in spite of the fact that the spin ji of the pole particle dif-
fers from zero (in particular, when i = 1/2). 1In recently published articles [3,4] the
authors state that the Treiman-Yang criterion is satisfied also in the relativistic case when
a particle with spin 1/2 is exchanged. We shall show below that: 1) this statement is in-
correct; 2) a nunber of cases when the Treiman-Yang criterion is satisfied, given in [2],
remain valid for nuclear reactions at high energies, when the left-hand vertex of the diagram

of the figure is nonrelativistic and the right-hand one is relativistic.
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1. The satisfaction of the Treiman-Yang criterion in the nonrelativistic case with
ji = 1/2 is connected with the fact that, first, a particle with spin 1/2 is not aligned in
terms of the higher polarization moments and, second, the spin wave functions do not change
under Galilean transformations (there is no relativistic spin rotation). A simple example
shows that for a relativistic particle the situation is different. ILet us calculate in ac-

cordence with the Feynman rules the amplitude M of the reaction
A+x-+>B+y+ z (1)

corresponding to the diagram of the figure, if A, i, and y are particles with spin 1/2 and
mass m, while B, x, and z are scalar particles. Let the coupling constants in the left-hand
vertex be g, and let the amplitude of the process i + x > y + z be iaj - b; a and b are in-

variant form factors. Then [5]

(en)*g _ i, - m
M= i——0r uz(iaa - b) -~ U, (2)
2
(anB) p; + m
Here u, and u, are the spinors corresponding to particles z and A, normalized such that u+u
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= ;p/m. wy denotes the energy of particle B. To simplify the formulas we assume that g, a,
and b are real quantities. We denote by F the square of the modulus of the amplitude of re-
action (1), summed over the spin states of the final particles and averaged over the spin
states of the initial particles. By F, and Fo we denote the analogous guantities for the
reactions A~ B+ i and i + x—+y + z. We note that F; is a function of only the variable
t = --(pB - pA)g, and F» depends on t, s' = (py + pz)z, and t' = (pz - px)z. From (2) we
obtain

ps + m? g*(pf + m®)
—zg—;;- F = 4m®F Fp + " Ehb [-(PAPy)(bg + a%g®) + EaE(PAQ)(PyQ)
T m

(3)
+ 2abm(pyq) + m2(a2qg® - v3) - 2abm(pAq)].

Thus, besides the terms that depend on t, tf, and s', expression (3) for F contains also terms
of the form (pApy) and (pAq), which depend on tAy = -(pA - py)2 and s = ~(pA + px)z. Fowill
be changed by a Treiman-Yang rotation, being a linear function of cosp (¢ is the Treiman-Yang
angle). A similar situation obtains even if we leave only the scalar part in the amplitude
of the process i + x>y + z (i.e., if a = 0), and consequently in the case when the reaction
i+ x>y + 2z is resonant. (These are just the reactions considered in [3,4].)

2. The terms that depend on tAy and s and which prevent the separation of F into two
factors (Fy and Fs) contain (p? + m?) and in the case of a nonrelativistic left-hand vertex
they have an order of smallness

pi + m®

~ (vi/c)2 << 1 (%)

m
regardless of whether the right-hand vertex is relativistic or not. If condition (4) is
satisfied, then the Treiman-Yang criterion will be applicable for arbitrary energies of the
particles X, y, and z in the following three cases: (a) jy=0or 1/2; (v) 3 is arbitrary,
but liB = 0, where liB is the orbital angular momentum of the relative motion of the particles
i and B; (c) jiB =0 or 1/2, where jiB is the total spin of the particles i and B.

We note that the distribution with respect to the Treiman-Yang angle should be sym-
metrical about ¢ = 0, regardless of the diagram describing the amplitude of reaction (1).

This follows from the invariance against reflection in the plane of the momenta of the parti-
cles A, B, and i in the antilaboratory system (the system in which Ex = 0).

Symmetry in the distribution relative to the Treiman-Yang angle is mentioned in [3],
where it is expressed by the relation F(p = 0) = F(p - n). Formulas (17) - (20) of [2] show
that this relation does not hold true, since the expression for F contains both even and odd
powers of cosp. This can be illustrated by means of a simple example. Let the particles A,
B, X, ¥, and 2z be scalar, and let the particle i be pseudovector (y and z need not be iden-
tical). We introduce unit vectors ﬁ, i, and 7, directed along the relative velocities of the
particles B and i, i and x, and y and z. The amplitude of the left vertex of the diagram of
the figure is a(S.n), and that of the right vertex [b(S-k) + c¢(3.1)]. For F we have
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F=la]2[b]2(n-k)2 + |a]2|c]®(n1)2 + |a]2(ve* + b¥c)(n-k) (n-1). (5)

> > -> > >
(n+k) and (k-?) are not changed by the Treiman-Yang rotation, while (n.l) is connected with
cosp by

1) = R ED + [ - BDHDQ - (ReD)?) Feoso. (6)

Therefore F (see (5)) contains cosgp in both the first and second degree.

In general, it can be stated that in the nonrelativistic case the gquantity ¥, which cor-
responds to the diagram of the figure with arbitrary spin ji’ is a polynomial of degree n in
cosp, with n < min[EIiB, [jiB], [ji], [,jix], 2L}, where [j] = 23 when j is integer and [j]
= 2j - 1 when j is half-integer; jix is the total spin of the particles i and x. L is the
geometric difference of the spins of the input (jix) and output (jyz) channels of the reaction
i+ x> y+z (see [2]), and Ijix - 3yzl SLE (gt jyz). The statement formulated above
follows from relation (6) of the present note and from formulas (17) - (20) of [2]. In the
relativistic case we can only state that n < 2'ji’ for both integer and half-integer 'ji [61.
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