Table II

Values of the Rydberg constants R, the line half-widths, and the distances 4w

between the limits of the exciton series in Cus0 and Agn0

Substance Series R, cnit Line half-width, cm? v, et
Cus0 Yellow 780 7 1060
T =k.2%K Green 1200 30
Ag 0 Infrared 800 10 -
T = 20°K Red 1300 4o 1670

This fact shows that in Ags0, just as in Cus0, the two series are the result of spin-
orbit splitting, and thus confirms Elliott's point of view concerning the origin of the

"yellow" and "green" series in CuzO.
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Ago0 the line corresponding to n = 1 in the "yellow"” series of CuxO.
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Several papers by Italian scientists report interesting anomalies of positron annihila-
tion in ionic crystals.

It has been found that magnetic quenching of ortho-positronium is anomalously weak in
Kcl {1], normal in polymers [2,3], and anomalously strong in water [2,4]. This means that
the magnetic-quenching parameter Q is smaller in KC1l and larger in water than the theoretical

value
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where Hey is the magnetic moment of the electron,

6
&y = 3 ]y (0) |2

is the excess of the energy of the triplet positronium (1% §,;) over the singlet (1t SO),

Tg = [hnrgclw(o)lz]'l = 1.25 x 10~1° gec

is the proper lifetime of the singlet positronium, 7 is the experimentally-measured lifetime
of the triplet positronium, determined in the condensed phase by the pick-off annihilation
(t = Tg = 111512 ror free positronium and in the gas phase), Ty is the classical radius of
the electron, and |¥(0)|2 is the density of the wave functions of the electron and positron
in the region where they overlap in the positronium atom.

On the other hand, it has been found [5-7] that the probability of 3y annihilation in
many ionic crystals (including the aforementioned KC1l, but to a particularly strong degree
in Be0) is much higher than the value Pa, = 0.27% expected for the pick-off annihilation.

Since
L
Pay = IS+ (1-21) L (2)
Ty 3 2 372

where I, is the experimentally observed intensity of the long-lived annihilation component,
and its lifetime 7 is also an experimentally-obtained quantity, we can attribute the growth
of Pay only to the decrease of T% (meaning also Tg).

To explain the anomalously strong magnetic quenching in water, Fabri et al. [3,4] pro-
posed to use the purely empirical AW = 5 x 10~* eV instead of the theoretical Awo = 8,34
x 10™* eV for free positronium l).

The anomalously weak magnetic quenching and the increase in the 3y-annihilation prob-
ability in ionic crystals have not yet been explained at all.

It is possible to interpret these anomalies by regarding positronium in ionic crystals
as a unique type of exciton consisting of two quasiparticles bound in a Coulomb field
U = -e®/er (where € is the optical dielectric constant, r the distance, and e the charge),
and having effective masses m_ (electron) and m, (positron).

Within the phenomenological exciton model
1 -3
2 _ 21 | M
le(o)[2 = [¥(0) |2 = [MoJ , (3)
where MO = mo/e is the reduced mass of the free positronium, m, is the electron mass, and

M= “h“L/(m+ + m_) the reduced mass of its exciton state in the condensed phase.

In addition, the quantity ug should be replaced for such an exciton state by the product
~ 2
e = wd(my/m ) (my/m,)

As a result we obtain for the magnetic quenching parameter Q
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and when m_ = m_=m
.
Q= Qe —, (5)
i.e., the effective field acting on the positronium in the condensed phase is
1
2
> |
= s Y
Hopp = [e el (6)
Further, we obtain on the basis of (2) for the 3y-annihilation probability
3
1 4
P37=12£6' —g[l]-f'[l-—Iz}—l- . (m
Tp € M 3 372

To estimate the compatibility of the experimental data with the concepts employed here, we
can put € ~ 1, just as done by Nosov and Yakovleva [8,9] for muonium.

It then follows from the experimental data on magnetic quenching [1] that m/ my = b+ o
for KC1l. From data on 3y annihilation [5-7] we can conclude that M/MO ~ 3 for Be0 (Pzy in-
creases by a factor of 23 (!) compared with that expected for pick-off annihilation).

We present below the values given by Pekar [10] for the effective masses of the electron

in some ionic crystals:

Crystal NaCl NaBr Nal KC1 KBr KT RbC1l RbBr RbI

m
;;; 2.78 2.96 3.25 1.85 1.87 2.11 1.78 1.70 1.89

The effective mass of the positron in ionic crystals is unknown, but in liquid sodium,
for example, m = l.9mO [11].

Thus, we have a qualitative confirmation of the proposed treatment of positron anni-
hilation anomalies in ionic crystals. For a quantitative check we must compare systematical-
1y, for the same substances, the data on magnetic quenching (which so far has been studied
only for KC1l, and with accuracy insufficient to determine He £f at that), and the probability
of 3y positron annihilation.
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1 It would be necessary here to allow also for the change in 7_.. It is easy to verify

S
that for a specified electron and positron mass we obtain TAW = (fic/e®)# ~ 137 = const. for

any value of |¥(0)]2.

INTERFERENCE OF DIFFERENT FREQUENCIES IN BREMSSTRAHLUNG

Ya. B. Zel'dovich
Submitted 4 June 1966
ZhETF Pis'ma 4, No. 10, 426-L429

We consider in the classical-electrodynamics approach the radiation produced by colli-

sion of a charge moving in a straight line before and after the collision (Fig. 1).

S A =~ ¢ ©

Fig. 1

The charge experiences an acceleration pulse whose time dependence is close to a delta-
function. In accord with the Lienard-Wiechert formulas, the electric field E of the resultant
electromagnetic radiation is proportional to the acceleration. Consequently, ﬁ(t) has at a
distant point the form shown in the middle of Fig. 1. i is directed downward (Fig. 1 shows
a moving negative charge), and E(t) is similar to r~18(t - ty - r/c), where t, is the instant
of deflection of the radiating particle. The purpose of the present note is to call atten-
tion to the fact that E does not reverse sign in the wave, with E either zero or directed
downward, i.e., there are no "oscillations" in the proper sense of the word.

A pulse of this type can, naturally, be expanded in a Fourier integral, i.e., repre-
sented as a superposition of sinusoidal (alternating-sign) electromagnetic waves of different
frequencies. However, if we specify only the spectral density (the amplitude modulus squared)
of the expansion as a function I(w), the we lose the very property causing the unique shape
of the pulse (the lack of an alternating-sign field). The shape of the pulse depends essen~
tially on the phase relations between the waves (the Fourier components) of different fre-
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