[1] S. G. Kulagin, V. M. Likhachev, E. V. Markuzon, M. S. Rabinovich, and V. M. Sutovskii,
JETP Letters 3, 12 (1966), transl. p. 6.

CRITICAL TEMPERATURE OF SMALI, SUPERCONDUCTORS

E. A. Shapoval

Physics Department, Moscow State University
Submitted 25 October 1966

ZhETF Pis'ma 5, No. 2, 57-61, 15 January 1967

It is known [1] that the critical temperature of sufficiently small superconductors
(non-annealed films) increases with decreasing dimensions. Attempts were made to explain
this effect theoretically. Kirzhnits and Maksimov [2] related the growth of the transition
temperature with an increase of the effective constant for the interaction between the elec-
trons in the surface layer, due to the Rayleigh waves. Kresin and Tavger [3] attempted to
attribute this effect to quantization of the transverse momentum of the electrons in thin
films, a quantization which is in fact nonexistent by virtue of the diffuse reflections of
the electrons from the surfaces of even very "good" films.

We shall show below that the growth of the critical temperature of small samples can
be explained within the framework of the BCS superconductivity theory without making use of
any new electron-pairing mechanism whatsoever.

The author has shown in [4] that the critical temperature (and to an equal extent also
the temperature dependence of the ordering parameter A) does not depend on the shape or di-
mensions of the sample. The limitation mentioned in that paper (sample dimensions larger
than vF/mD), connected with the fact that momentum cutoff in Bardeen's four-fermion Hamil-
tonian leads to a spatial smearing of the interaction at distances ~VF/wD (see, e.g., [5]),
is in fact insiginificant. 1Indeed, if we start from the more realistic Frohlich Hamiltonian

and use the method developed by Eliashberg [6], we can show that the cutoff in the equation

A(s)=|A|ZF (r, 1) (1)
@

should be carried out during the calculation not with respect to the momenta (or energies),
but with respect to the frequencies at w ~ w;. This means that the interaction of the elec-
trons via the phonon field, which is responsible for the superconductivity, is local and not
instantaneous, this being connected with the low propagation velocity of the lattice excita-
tions. Indeed, the lifetime of the virtual excitation T ~ l/wD is relatively large, but
during that time the excitation can propagate only over a distance on the order of the
lattice constant a ~ Tec.

The transition temperature can be determined by finding the maximum temperature at
which a nontrivial solution exists for the integral equation

ACe) = AT 2 G (r,¢)G_g(r,r)A(r?) dr”. (2)
lol<wy
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We employ, as usual, a temperature technique [5], so that w = (2n + 1)nT. Here Gm is the
temperature Green's function of the normal electron, and A is the four-fermion interaction
constant. Expanding, as in [3], qm in terms of real eigenfunctions of the electron in the

sample under consideration, wn(r), we get

A =A|T 3 3 —YolD¥a (D)
ol<ops,m(f _iw) (£, +iw)

T, (e g (£) A(r)dr?, (3)

where gn is the energy of the corresponding state, reckoned from the Fermi level, and tne
summation is over all the states of the electron.
Substituting in the right side of (3) the constant value of the parameter A(r) = A,

we obtain

A(l‘) =l)¢lvln——"-}——- Albn (f) ’ (h)

c

where v is the density of states at the Fermi level, and the square of the wave function is
averaged over all states near the Fermi surface, lying in an energy interval that is narrow
compared with Tc' If we neglect boundary effects, this average is equal to l/V and we obtain
the result of [4], viz., that the transition temperature is independent of the shape and
dimensions of the sample.

If we take boundary effects into account, then wi decreases near the boundary over
distances of the order of 1/pF, and vanishes on the surface of the sample. Since the in-
tegral of wi over the volume remains equal to unity, this increases the mean square inside

the sample:

S
W) = (V-2)7 (5)
PF

where V and S are the volume and surface of the sample, and the coefficient a ~ 1 and depends

on the boundary conditions. In particular, for a plane surface o = =n/l, and

[ 7S
(v - zp—; )~ inside sample
Yi(r) = s - (5a)
sin z
(V- Yy -l(1 - PF ) near surface
4p]= 2sz

(the z axis is perpendicular to the surface). The latter result is valid if the plane sec-
tions of the sample surface do not exceed 1/pF.

We must furthermore recognize that the presence of the boundary shifts the Fermi level
EF = p§/2m. The effective volume, i.e., the region accessible to the electrons, is smaller
than the volume of the sample, in accord with (5), by an amount as/p, from which we get an

equation for the shift of the Fermi level
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J(1-—=—)p?dp=/pidp, 6
o pv ! (6)

where P is the Fermi momentum in an infinite volume. Hence
v=v, (1 - aS/2p, V), (7)

where Yo is the state density for a sample of infinite size.

The final equation for the transition temperature cen thus be written in the BCS form:

2yw
1= [Afv ln 222, (8)
L [«
where
— a S
Vg = vy V=v (14— ) (9)
2p,V

o

and thus takes account of both effects noted above.
Physically Ver has the meaning of the state density near the Fermi surface, divided
by the effective volume.

From (8) and (9) we get the correction to the transition temperature:

AT S 2
2 1In 2220 (10)

T. 2 pV =T,

[

It is easy to carry out similar calculations for arbitrary temperatures. The tempera-
ture dependence of the ordering parameter A(T) remains the same as before (in particular,
A(0) = nTc/y), except that it is necessary to use in all the corresponding formulas the
critical temperature defined by (8) and (9).

For ordinary-metal samples with thickness on the order of 107® cm, formula (10) pre-
dicts an increase of 10 - 15% in the critical temperature, in good agreement with experi-
mental data on non-annealed thin films. Such films consist apparently of a large number of
small crystallites with dimensions on the order of or smaller than the film thickness. When
the films are annealed, these crystallites become "sintered" and this leads to an apprecia-
ble decrease in the total surface and consequently to a corresponding decrease in the transi-
tion temperature, as is indeed observed in the experiment.

In conclusion, the author thanks A. A. Abrikosov for an interesting discussion and for

useful remarks.

Note. After this letter was written, Abeles et al. [7] published a very interesting
paper in which the dimensions of the crystallites making up the investigated films were de-
termined for the first time. For indium and tin, with crystallite dimensions 110 13., the
transition temperature was found to rise by 10%, which is in good agreement with (10)

(ln[27wb/nTc equals 0.36" and 0.31° 1 respectively for these metals). For aluminum, the
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variation of T with L agrees with (8) - (9), but the observed values of AT/Tc are apparent-
ly four times larger. It is possible that this is due to the strong anisotropy and the con-
tinuous structure of the Fermi surface of aluminum: formula (7), which is derived for the
isotropic model, is not applicable here, for the state density apparently increases with
decreasing sample dimensions, leading to an even greater growth of the effective density

than predicted by (9).
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Light can become self-focused in a liquid via the Kerr effect [1]. The self-focusing
threshold of circularly polarized light (in the light channel) is four times the threshold
of linearly polarized light [2]. We shall discuss here the question of self-focusing of
elliptically polarized light (and of circular polarization as a particular case). Under
certain conditions, the light channels produced for such light will have not elliptical
but linear polarization. This, in particular, lowers the self-focusing threshold for
circular polarization to a value one-half that obtained in [2]. This question has a direct
bearing on the problem of laser-beam stratification [3] in the case of elliptic polarization
of light in liquids, as well as in solids, where electrostriction is the stronger self-
focusing mechanism.

The dielectric tensor in the electric field is [2,&]:
= - 5 L 2 .
€357 % * 8B, - ab, % ES (1)
Assume that elliptically polarized light

”
Ey:EICOS(wt—kX);Ez=Ezcos(a)t —kx _E.)

propagates along the x axis. Then contributions to Eij are made only by the time-averaged
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