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The instability connected with the "loss cone” in a plasma with hot ions and cold
electrons was first considered in [1]. It is the consequence of the anisotropy of the ion-
velocity distribution function, since there are no ions in the "loss cone.'" A similar in-
stability can arise in a plasma placed in a magnetic mirror trap and consisting of hot elec-
trons whose velocity distribution function is zero in the loss cone and is much higher than
that of a cold plasma with isotropic distribution function. Such a plasma was produced in
a number of experiments (see, for example, [2,3]).

Let the hot-electron distribution function be n’f(v“, Vi) = 0 at ,VHI >av , o= JR = 1,
R - mirror ratio, n' - hot-electron density, i.e., [f dv = 1. The cold plasma has a density

n. and a temperature T >> k“’
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v - frequency of electron-ion collisions in the cold plasma. The term with v takes into ac-
count the friction between the cold electrons and the ions.

Let us consider first the case when n' << n,- We then find from (1) that
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The function ¢(ub/k§) is positive when (wo/k§ <1, |¢(ab/k§)| < 1, i.e., the unstable waves

are those with k > (ub/Q). Electron-ion collisicns can suppress the instability. The in-
stability vanishes if
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where
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where A is the Coulomb logarithm, we find that in order to stabilize the instability we must

satisfy the condition (Tb is in electron volts)

(%)

The value of u and the form of the function w(ab/RQ) is determined by the concrete form
of the function fo and consequently depends on the mirror ratio.

To estimate this dependence,
we choose the model function
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Actually, fo will not be cut off abruptly at IVHI = av

s This, however, has little effect on
the form of ¢#(w/kv) (see [5], where numerical calculation results confirming this fact are

given). For Ty = oM’ the expression in the curly brackets of (1) takes the form
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where IO and Kb are Bessel functions of imaginary argument. Figures 1 and 2 show plots of
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Wy Ygs ¥, and ReF(yO, a) against the mirror ratio R, obtained from (6) by numerical calcula-
tion (the value of Y, was determined from the equation ImF(yO) = 0, and the value of y,, cor-

responds to the phase velocity at which the instability increment, defined by (2), is maximal).
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Fig. 1. Plot of p (curve 1) and
of ReF(yg) (curve 2) vs. the mirror Fig. 2. Plot of y_ (curve 1) and yq
ratio R. (curve 2) vs. the mirror ratio R.
We see from the figures that for the mirror ratios R = 2 - 5 usually encountered in
experiment, and for a value of the Coulomb logarithm A = 20, the instability vanishes if

(QO is in electron volts)
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We now consider the case when n, < n', and take into account the finite nature of the
temperature of the cold electron component T.. Using the Nyquist criterion, we find that

(0]
the instability will develop if the following inequality is satisfied

T
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i.e., if the concentration of the cold electrons exceeds a certain critical value. Condition
(8) takes into account the Iandau damping of the unstable oscillations by the cold electronms.
We can consider similarly the case when there are no cold electrons, and their role is
assumed by cold ions. To this end it is necessary to substitute m/M for no/n' and T, {(the

ion temperature) for T, in the inequality (8). We find that instability takes place if

T
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Thus, a strong difference between the electron and ion temperatures is necessary in order

for the instability to develop.
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The electronic spectrum of graphite is usually described by the Slonczewski-Weiss model
(SW). 1In this model, the dependence of the energy on the quasimomentum is expressed on the
basis of general principles [1] in terms of parameters characterizing the conduction-electron
interactions. The Brillouin zone for graphite is a hexagonal prism with a base-side length

2n/ao and a height 2n/co (a. = 2.46 & and ¢y = 4,70 A). The Fermi surface of graphite occu-

a
0]
pies a small section of the Brillouin zone and is located along the vertical edges of the

zone. In the SW model we can write for the dispersion law the simplified expressions:

Ei=2y,cos?2¢ th2%2/2m* (¢), (1)
m* (¢) = 4/3(”/"0)2 1/vh) cos &, (2)

where ¢ = kzco/2, k is reckoned from the edge of the Brillouin zone, Yo is the interaction
energy of the conduction electrons in the plane of the layer, 7y, the interaction energy of
the conduction electrons of the neighboring layers, y, is the same energy through the layer,
and the + and - signs correspond to electrons and holes.

From this, recognizing that the Fermi energy €p = (4/3)75, we can readily obtain the
value of the extremal section of the hole part of the Fermi surface of graphite, parallel
to the (0001) plane,

Seeee = (4/3)2 n/030y,/v3) = 0,923y 7,/ A2

(3)

The expression for the analogous section of the electron surface differs only in the value
of the coefficient preceding 7172/73. The SW model was experimentally confirmed in a number

of recent papers [2-3].
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