Fig. 3. Other transverse momenta (shown dashed in Fig. 3) were calculated relative to the
center of gravity of the secondary particles, using statistical weights proportional to the
corresponding energies. As seen from the figure, these transverse momenta are relatively
small.

It seems to us that all the transverse momenta obtained in this manner can be regarded
as realistic. Of course, they can be influenced by all the uncertainties connected with the
errors in the determination of the primary energy and of the angular distribution, but this
cannot change the overall picture of the transverse-momentum distribution. The average value

of p is (pl) =1 - 2 GeV/c.

*
A complete analysis of the interactions is described in the preprints of the Insti-

tute and has been submitted to Nuovo Cimento.
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1. 1t has been shown that in resonant interaction of y quanta or particles with nuclei
situated in a crystal lattice, the resultant excited state (compound nucleus) has a collective
character. In other words, the excited state is in this case not an excitation of an indi-
vidual nucleus, but is "smeared" over the entire crystal.

It turns out that such a collective state can occur under certain conditions following
Coulomb excitation of low-lying levels of nuclei which accompanies the scattering of fast
charged particles in a regular crystal. When such an excited state decays, the angular dis-
tribution of the y quanta has a unique character which differs greatly from the usual case.

2. Let the Coulomb excitation be realized by a beam of fast heavy particles (for con-
creteness, protons) with initial momentum p. As a result of the interaction, the nuclei of
the crystal acquire a momentum q = p - p', where p' is the final momentum of the particles.

In an ideally rigid lattice, the y radiation of the n-th nucleus will have a phase
exp[i(q - K)Rn} (k - wave vector of the y gquantum). In & real crystal, such a phase is main-
tained only if no phonon excitation takes place, i.e., the process will have a "recoilless"
character.

The phononless-transition probability depends on the setup of the experiment. We can
visualize two types of experiments: a) an isomer level of the Mossbauer type is excited
and only the 7y quanta for which the Mossbauer effect takes place are registered; b) all the
v quanta are registered, regardless of their energy. A suitable analysis shows that in this

case

a) f(q, k) = exp [-2(q) ~Z(x)], B) f(q,Kk) = exp[- Z(q - «)], (1)
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where Z is the usual exponent in the Debye-Waller factor. If the state of the lattice does
not change, then the Coulomb excitation and the subsequent y decay have a coherent character.

The matrix element for such a transition is written in the form
M con = EMo(q, x/x) [F(q, x] 12 expli(g-«)R 1 (2)

When the protons are scattered to angles of some magnitude, the momentum transfer turns out
to be so large that f, together with (2), practically vanishes. The coherent amplitude turns
out to be different from zero only at small scattering angles 8. In this angle region we have

(u is the velocity of the incident particles)

2

92=q2. ., p292, - ke (3)

v

9min

and for real values of k one can speak of angles 6 = qmin/p' By virtue of this, for transi-
tions corresponding to a multipolarity E2 and higher, the coherent part of the total cross
section will be at least (qmin/P)Z times smaller than the ordinary cross section, and in
practice it cannot be determined experimentally.

However, for multipolarities El and M1l an appreciable part of the cross section is con-
centrated precisely in the small region of proton scattering angles aqmin/p. This makes
possible coherent processes for such transitions by Coulomb excitation in the crystal.

3. The differential cross section for coherent emission of y quanta can be represented

in the form

1
da-coh= gZIMO(q.i){Z flog)-—8( q-x+K)&(e -c'—wo) d3p’dQK. )
K K Yo

Here Yo is the volume of the unit cell, K the reciprocal-lattice vector multiplied by 2=,

g is a constant, and Wy = KC. We integrate over a finite proton momentum. This eliminates

the momentum ® function, and the argument in the energy & function now vanishes under the

condition
(20) c K (k- K)?
cos(kp)l=—~ pm—m= = ———,
u px 2px (5)

In the scattering-angle interval of interest to us, the last term of (5) is small and
can be neglected. We can then conclude from (5) that the y quanta will be emitted in cones
with axes along p. Let the crystal have cubic symmetry and let the protons move along the

cubic axis. Then

c K
cos{Kp) = ~— = ~2,
TR

The maximum number of emission cones is obviously simply equal to

2k
7 + [—K'a‘ ]:

x

13k



0 . N . .
where Kx is the reciprocal-lattice basis vector, and [...] denotes the integer part. If we
consider excitation of low-lying levels only (of the isomer type), then the number of such

cones is quite limited.

The total cross section for an individual cone (a) can be written, with (4) and (5)

taken into account, in the form

v . i(. 2 2mm
con = ZIMo (0, =) 12 Hlay k)22 L KeK 2k ©)
'L K pKVO

The summation here is over the reciprocal-lattice vectors lying in the plane perpendicular
to the x axis.

L. For El and M1 we have (6 << 1) [4]

2
[M(ED (g _"_”z -1~ ZA(ZEl)pZ(i)F;(-K—)]%;

K q x q
7
K M K 2 (qz _qgﬁn) ( )
| MMV (g, ~—) |2 = (1 + AW — )] p? o =2
K K q

A large number of terms in the sum over the reciprocal-lattice points contribute to the cross
section (6). This makes it possible to change from summation to integration, making the

substitution

3. 0 rd2k,
Ky (2m1

Substituting (7) in (6) and extending the integration to = (which can always be done if ac-
count is taken of the exponential character of the dependence in f), we obtain for the case
when the cone angle is small

—Eil-Z(q; 001 + Agfl)+3A(ZEUz(qmin)] -

. El .
O g gy e (mid ~3AG e~ (dmin)
e (8)
R (1+ A~ Ei(-Z(q ;I 1+ Zgin ) —e~Z(9min)].

This is the final expression for the cross section, corresponding to each individual cone,
for coherent emission of y quanta in the case of Coulomb excitation of the nuclei.

It is of interest to compare (8) with the usual total cross section ¢, for an individ-

0
ual nucleus. It is easy to show that (we confine ourselves to the El case)
zyc(loh ~ g { —-Ei[—Z(qmin)N (9)
o 2(ka) ln(2p/qmin)

We see therefore that to obtain a noticeable coherent effect it is necessary: 1) to excite

the lowest-lying levels of the isomer type, 2) to use beams of sufficiently fast particles
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so that qmin does not differ strongly from k.

5. When the primary particle moves in a crystal, it looses energy. This imposes
limitations on the crystal thickness within which coherence is maintained. The correspond-
ing value is obtained from the condition that the phase will not change over the thickness

by more than x:
9 min [ Ae

R I £ Y

2¢ (10)

We note that this condition also calls for high-energy particles.

6. We remark in conclusion that, in principle, a process which in some sense is the
inverse of that considered above can exist, namely a specific Coulomb excitation of an in-
dividual nucleus by the periodic field of a crystal lattice. This phenomenon, to which at-

tention was first called by V. V. Okorokov [5], calls for a special study.
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1. Nonleptonic decays of K mesons were considered in a number of papers [1-4] within
the framework of the hypothesis of partially conserved axial current (PCAC) and current
algebra. Assuming that the weak-interaction Hamiltonian H is in the form of a product of
a current by a current, and that the matrix elements vary slowly when the 4-momenta of
the pions approach zero symmetrically, Suzuki [1] proved the A = 1/2 rule and obtained a
relation between the probabilities of the K -+ 3n and K » 2n decays. However, inasmuch as
in the limit of zero pion momenta the amplitude depends on the method of going to the limit,
the assumed slow variation is not Jjustified. To take into account a fast variation, it was
proposed in [3] to expand the amplitudes in the pion energies, but the cause of the rapid
variation was not discussed.

In the case of the K +~ 2n decay, as noted in (4], the ambiguity in the calculation of
the limit of the amplitude can be explained by means of a pole diagram (Fig. 1).

2. In this note we consider the consequences of the assumption that the K » 3n decay

amplitude is a constant plus a rapidly-varying contribution from the pole diagrams shown in
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