For amplitudes with two-pion isotopic spin I = 2, equation (4) yields

oo 2) ! =
i BVt u =) 4

n

= 0’
41.42 t

(9)

= @l w2 8t 4
4{‘2%2 2 = dt}n@#‘g_#z gi*)"”‘/gzs_:—rw+ny .

It follows from (9) and (5) that the contribution of the states with I = 2 to the y-x
scattering is comparable with the contribution from the states with I = 0. Since the right
sides of the equations for the amplitudes @é?) and ogg) are similar to those for ¢§§> and
®g§), and furthermore the main contribution to ®g2) is made by states with total spins I =0
and I = 2, we can expect a strong interaction in the states with I = O and I = 2 also in the
case when I = 2,

It should be noted that if experiment confirms the correctness of the derived relations,
this will serve as evidence in favor of the premise that the Regge poles of the t-channel
with a(0) > O make no contribution to y-n scattering, while the aj(o) corresponding to o and
f mesons are negative.

The author is grateful to M. A. Markov and A. A. Komar for a useful discussion.
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By electromagnetic universe is meant the simultaneous solution of Maxwell's equations
for the electromagnetic field and Einstein's equations for the gravitational field. The
properties of the electromagnetic universe were discussed recently in several papers [1,2].

Of great astrophysical interest is the so-called cylindrical magnetic universe. 1In
this stationary solution of the gravitational equations in vacuum, the magnetic field with
cylindrical symmetry is determined completely by the metric of the space, and the metric is
determined in turn by the energy-momentum tensor of the magnetic field. Such a solution in

vacuum (zero electric current), as shown by Melvin [1], is stable against small perturbations.
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K. Thorne [2] has also demonstrated the ebsolute stability against arbitrary perturbations
which do not violate the cylindrical symmetry.

We consider here solutions of the magnetic-universe type in the presence of uncharged
matter described by an equation of state p = ae. We shall seek a solution in a co-moving

reference frame (uouo ==l u = 0) with diagonal metric that depends on one variable (x2)

-dszav’-e“"i(dx'.)z, F,-=F,-(x2) (vo=-1,v,=1. (1)

The magnetic field is directed along the x® axis. Then integration of Maxwell's equation

aFik\/'_é'—
—— =0 (2)
oxk
yields
Fla B B (3)

V- eFo +F+F+ I“3

where HO is a certain characteristic constant magnetic field. The nonvanishing components
of the energy-momentum tensor of the electromagnetic field (TI; = -,lpt(FieFkl - %S?Flmf‘tm)) is

equal to

H? e;"F1

1727 T NF+F +F
m JURrFR+Fy)

(&)
‘I‘K k k, .
and thaet of the energy-momentum tensor of the matter ( ;= (e + p)uiu + p&i) is

TlaT2=T)=ae, T)==¢, T=(-1+3a)e. (5)

We can now write the corresponding components of Einstein's equations

8mk
R = 21k - 1 5k 1))
1 e 1 2 1
2
F’)] —-4—8”[ % i
3 c 8nm  2E+E+F,)
e

-2 P PR . .

Ry = 628E"+ B (R - F)~ '
1

- 5(1+ 3(1)6]: (6)

2F,
8nk [ Hg e !
— ——————————————— +
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c 8n 92(Fo+l;l‘+F3’
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+ 13(1—41)11. (7)
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Ri= 2 ~E"+ FE'(F) ~F " ~F' =F’)]= -2 e +
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-2F ,0 ’ ” » »’ !
Rjue 2[-(!: +I;”+I;")+I; (i +I'; +I;)- (%’2+FJ'Z+F3'2)]=

2 2F,
8wk H 1
- £ +Lir-ayel. (9)

et 87 AF+F +F) 2

The primes denote differentiation with respect to the variable xZ.

Inasmuch as the metric depends on a single variable, we can use the transformation

x2 - x? and see to it that the condition
- 10
E=F+F+F (10)
is satisfied, after which the equations become much simpler. In addition, we introduce the

notation

B
€M ———
8n emz
and measure the length in units of
&2
am —
Ho\/x
As a result, Egs. (6) - (9) take the form
.. 2F ~
~E%e 1-%(“3(,),, (6*)
2
_]-i”--eq-o-;—(l—a)?', (")
- 2F,
~ere s MLy, (8")

o rld L ’ L4 ,’ 2 Y
~ETL F s BT )4(F 4 B4+ EY) =(Fg2+ F{2+ F32) = &2F1 +

+L("‘d)¢') (9')
2
where now the prime denotes differentiation with respect to the dimensionless variable
o = x?/a. The first integrals of (6') - (8') are
£ ", 2R
i=*~Vnai-e " =(l-a)f TdF
F/=~F'+2a [ %do+n (11)

F31= ~F' ~(1~a)f¥do+n
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(n - integration constant). Equation {(9') yields the condition for the determination of Z:
(I-a)f ¥dF +n(3a-1)[Tdo —2a(l ~a)f(do jZu o, (12)

Unfortunately, further integration is impossible in general form for an arbitrary value of a.
*
The only exceptions are the cases @ = 0 (dustlike matter) and a = 1,
We consider first the case when the energy density is small (for arbitrary value of a).

We then get from (12)

~ l —-a 1 -~ 3a
(e= xp |—— F, -~ —_ =% 1
€, exp | - ) ~ nol ) (13)
and from (11) we get (ch = cosh)
eFln n erseznachna. (14)
ch no
The energy density € of the matter ig
l+a
H? H? -
~ (2] [¢]
ENE o g, (Moo @ (15)
8ne

and the density of the electromagnetic energy is

o

2
T Hoz ez(Fl-FZ) - A a
% " &n 8ﬂ(chna°m7)4

’ (16)

*%
The metric (14) can be reduced by the transformation e’ - p to Melvin's metric [1] (x1 > @)
e

dg?, (17)
(p+ 1)?

~ds?=(p2+ 1) (~dt2+ dp2+ dzd +
The maximum of the energy density e, just as that of Tg, is reached on the axis when
p = O. Thus, in a self consistent magneto-gravitational field uncharged matter will be
gathered and concentrated near the axis.
For the case of dustlike matter, a = 0, Eq. (12) has only one zero solution € = 0.
Thus, dustlike matter cannot be captured by a magneto-gravitational field. When a = 1 we
get from (11) and (12)

Fme o0, (18)
FE € 2no
eFla L e%-e"” chno, ©°=chno exp(no+ ——e ). (19)
ch no 2n?

The energy density for the matter is in this case

2 2
€ Hy 1 S |
€= o 3 exp(.. -‘L ezna) = (0_2 _..’é. (.__ exp(.(—opz) (2O>
a? L (chnaena)Z n? n® 2n Ly nl

.
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and for the electromagnetic field

H? 4 2ng,_ 2H] 4 €
-T°= —2 (chng ™9 exp(- 8- %)= —2 (p% I Yexp(- = p} , (21)
° 8n n? " n?

The metric for a = 1 reduces to the form

ds2=(p2+ 1)2exp(—= gA) (-dt2+d p)+(p% 1)2 dP+ o do? . (22)
n? (Pz+ 1)?

We obtain a curious result: the presence of neutral matter with a magneto~-gravitational

universe decreases its characteristic dimension, in accord with (20) and (21), by a factor

¢Eg, where € is the ratio of the matter density to the electromagnetic-field density on the

system axis (it is obvious that the constant n can be chosen equal to unity). Thus, the

magnetic energy will be concentrated in a narrow region of small values of p. It is more or

less evident that this result holds-also for the case of any other equation of state with

a parameter a £ 1.

This raises the question: Are quasars magneto-gravitational formations or are they
only such during the initial stage of their evolution? The arguments against this assumption
[1] are based on the data of Iynds and Sandayge [4], who give for the quasar MB2 a character-
istic field of 2 x 10™% G in a certain effective region, whereas to explain the observed
quasar dimensions fields on the order of 102 G are necessary. However, the presence of mat-
ter, as already shown, reduces greatly the characteristic dimension, or more accurately, the
connection between the characteristic dimension and the magnetic field.

It is also possible that the magnetic field of planets is a remnant of a certain pri-
mordial magnetic field retained by the gravitational field of the nonmagnetic matter of the
planets.
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* An equation of state with @ = 1 can obtain for a system of particles whose interac-
tion is not renormalizable in quantum field theory. 1In this case the interaction Hamiltonian
contains derivatives, and the interaction constant contains a parameter ! with dimensions of
length. Then, if we characterize the state of the system by a temperature T, we shall have
at our disposal the dimensionless parameter hc/kI!. Including this parameter in the depen-
dence of the energy and of the pressure on the temperature, we can imitate the equation of
state € = p (see also [3]).

It is obvious that our metric coincides in first approximation with the metric of

[1], since we do not take into account the reaction of the matter on the metric.
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