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As is well known, magnetic breakdown, occurring in relatively weak fields [1,2], changes
the character of electron trajectories in a magnetic field. This circumstance can exert an
appreciable influence on the dependence of the components of the electric conductivity tensor
on the magnetic field [3,4]. Naturally, the role of magnetic breakdown is most important in
those cases when & closed trajectory turns into an open one or vice-versa (see the figure).

We shall henceforth assume that breakdown re-
sults in open trajectories (Fig. a). In the
opposite case (Fig. b) it is simply necessary

@ to move from stronger to weaker fields.
In constructing a theory for galvanomag-
netic phenomena with allowance for breakdown,
. Falicov and Sievert [5] started from the fol-

lowing assumptions: 1) The system of electron
trajectories is strictly periodic; 2) the breakdown between classical trajectories is de-
scribed by a probability p - the relation between the phases of the quasiclassical wave
functions on neighboring trajectories was not taken into account.

We note that the first assumption is satisfied only for strictly fixed directions of
the magnetic field. A slight tilt of the latter changes greatly the character of the tra-
jectories. As to the second assumption, it has applicability limits which were not stipu-
lated by the authors of [5]. Indeed, a connection between the quasiclassical sections of
the trajectories denotes that breakdown can result in a certain quantum nonlocalized state,
similar to the band state in a crystal lattice [6,7]. In this case, in calculating the
galvanomagnetic characteristics it is necessary to start from a new band structure, the
parameters of which depend essentially on the breakdown probability and on the relation be-
tween the phases of the wave functions on the quasiclassical sections of the trajectories.
Estimates show [7] that the conductivity-tensor component perpendicular to the direction of
the open section is of the order of peoo (co - electric conductivity at H = 0), and the

corresponding resistance-tensor component increases quadratically with the magnetic field.
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The occurrence of a band state is possible if the path traversed by the "new" particle be-
tween the collisions is large compared with the dimensions of the individual classical orbit.

In our case it means that it is necessary to satisfy the condition

Vort M ry, (1)

H

vwhere vgr is the group velocity of the "new" quasiparticle, r is the classical orbit radius
in a magnetic field, and 1 is the free-path time. If vgr = va (vF is the Fermi velocity),

then condition (1) is equivalent to
P>>y=r“/’ (, =VFT)- (2)

In the opposite limiting case (p << y)}, the diffusion approximation is valid: the particle
revolves many times on a classical orbit, and rarely jumps over to the neighboring orbit
forgetting its prior history (phase averaging takes place). The jump can occur either as a
result of breakdown (the probability per unit time is puh, where wh is the cyclotron fre-
quency), or the result of an ordinary collision (probability 1/t1). Consequently, the effec-
tive diffusion coefficient D is (1/7 + pmh)rﬁ. The Einstein relation modified for the case
of a degenerate gas yields a mobility u = D/eF. Consequently the diffusion conductivity is
of the order of

=nelux(py+y?)og.

%aif (3)

From the derivation of (3) we see that it depends on whether the breakdown results in
one or two directions of open sections. In order of magnitude, formula (3) coincides,
neturally, with the corresponding formula obtained by Falicov and Sievert [5].

Strictly speaking, the formula obtained is valid only when the ordinary term in the
electric conductivity (~7200) is the principal one. One can assume, however, that for an
arbitrary magnetic-field direction the conditions for the occurrence of a bound quantum state
become more stringent, and the diffusion approximation "works" in a wider range (at a larger
value of the breakdown probability p than required by inequality (2)). This would signify
that: 1) a situation is possible at which the second term in formula (2) would determine
the dependence of the electric conductivity on the magnetic field; 2) an additional sharp
anisotropy of resistance, due to breakdown, should be observed.

The asymptotic dependence of the resistance on the magnetic field greatly depends, as
always, on the magnitude of the off-diagonal element of the tensor O’ and is not the same
in metals with unequal number of electrons and holes (ny # np) as for metals with ny = njp
(see [8]).

Tt should be noted that formula (3) is certainly not applicable to an ideal crystal at
zero temperature (£ = =), If there are no real dissipative processes, a stationary state
cannot be established in a metal in an external electric field. The asymptotic value of the
electric conductivity is determined by the structure of the produced quantum states and by
the mean free path. This question calls for further research. It can only be stated that

if a current state is produced, then the electric conductivity will increase with increasing
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mean free path. On the other hand, if the state is currentless, then an increase in the mean
free path leads to a decrease in the corresponding component of the electric conductivity (a
diffusion situation is realized on the basis of new states, see the derivation of formula (3)).

The authors are grateful to V. G. Peschanskii for acquainting them with his results
prior to publication.
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It is well known that the experimental data for different properties of the so-called
anomalous superconductors (which include primarily Pb, Hg, Nb, and NbN) are in poor agreement
with the theoretical formulas obtained in ordinary superconductivity theory (see [1]). In
these superconductors, the electron-phonon interaction is not weak and consequently the ratio
"TIJQ (6 - Debye temperature) is not negligibly small (for example, nTk/e ~ 0.25 for Pb).

The ratio A(o) /’.’I’k and other characteristics of anomalous superconductors were calculated
in [2] numerically and in [3] analytically on the basis of the Froehlich model, which takes
direct account of the interaction of the electrons with the lattice.

Ve consider here the jump of the specific heat on going from the superconducting to
the normal state, and the behavior of the thermal conductivity near Tk for superconductors
with strong coupling.

We write the equation for the self-energy part Z.(mn, T), describing the pairing of the

electrons [4]:

2 rd
® o, T) (1)

T
S(w,,T) = ——g? T [dk : :
(27)3  @n 0l (o, -0, )? 2142V 0)+E43 o ,T)

® = (2n + 1)xT, w - phonon energy. The term ~w§ '72/w? in the denominator of the intergrand

(1) is the result of the I-dependence of the function Z1(<Dn: T) which describes the scatter-
ing (we shall not write out the corresponding expression in detail). By regarding the addi-
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