H_ = 0 in the transition layer. Owing to the smallness of X, Eq. (5) does not have in this
case nonvanishing slowly varying solutions. Therefore, to calculate the domain wall it is
necessary to use Eq. (4), in which the field H is set equal to Hy -

Putting for simplicity 4aM(B) = a sin kB, where B = B -~ [(By + Bo)/2] and ak - 1
= k2 << 1, we obtain the simple equation

~ k2§3 r2 d2§ N /6—
B L T By
6 4 dy? k
the solution of which is
~ 6
Bly)- Y0 X g0 (6)
k 2d 2y 2«

The surface tension A is equal to

Aeo ;d [Bf(y:H (B) —H, ) dB LIS P

= — y )— + = 1= X

dr - B O g 8 dy 24 9B '7? 7)
x (B, —B;).

In the case when By - By is small compared with the period of the oscillations, in-
cluding also the limiting case (BM/aB)max >> 1, the dimension of the domain wall is d ~ r,.
In this case (7) gives the correct order of magnitude of the surface energy.

The author is grateful to L. P. Gor'kov and I. E. Dzyaloshinskii for discussions.
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We shall demonstrate, using the electron diamagnetic moment as an example, a new type
of phase transition (from a homogeneous structure to a periodic one), the necessary condition
for which is a nonlocal connection between the thermodynamic guantities, and for which it is
possible to explain the character of the singularity at the transition point. The diamagnetic
moment M is determined [1,2] by the values of the magnetic induction®* B over the entire

Larmor orbit of radius r, and (Fm - proper free energy of the magnet)
=-8F /8B, B=H+4sM (D)

are integral equations which, generally speaking, have non-growing oscillating solutions
-
M = M(r). (We choose the z axis in the direction of H; if the electrons have an infinite

mean free path, there is no dependence on 2z, T = {x, y), and H is a constant vector, since
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curl § = 0.) The "usual" equilibrium homogeneous ﬁo can become inhomogeneous when the ex-
ternal parameters (ﬁ and the temperature T) are varied, for two reasons.

1. The total free energy

1 H? HZ 1  &F
F,=e—-[BdH=F,+ f(——~+2aM2)dr = F_+ f{—- e —M---"- dr=
4z 8z 8= 2 oM, (2)

= ff,dr; M1=M—M0,

becomes smaller in the inhomogeneous state than in the homogeneous one. Near the transition
point T; we have M; << Mb and (taking into account the translational and central symmetry
and including, for example, the Fermi-liquid interaction)

m

1 ‘s , HPC
F =F +[K G -r')Ml(r’)dr"*r?ffK'j(l‘-r', r-1) M (rhx .
g 3

xMi(r ) dr*dr” + ..., (3)

where K, are even functions of all their arguments and ﬁo = -(1/4x) [K1(T¥)dr. Equations (3)
and (1), together with div ﬁl = 0, determine the periods of the resultant structure. Thus,
if z coincides with one of the principal crystallographic axes (for simplicity we shall con-
sider only this case) and Mx = My = ¢, then in the principal approximation

Mi=M,, =Acos(kx) cos (ky); ofoﬂ-l(x.y)Cos(kx)cos(ky)dxdy = (&)
= Ll(k) = l:
Li(r)=[K,(r~r ‘yr’)dr’, (ha)

Since I3(0) = UaX < 1 (the condition of thermodynamic stability for ?5; X = BNb/aBO) the

sign of Ly(r) must alternate for k to be real (there is obviously an infinite number of com-
plex k) and this in turn calls for the presence of more than one zone (this is not obligatory
for finite A). The solution obtained in [3] for A -~ O in the case of one zone, with knX > 1,
is not thermodynamically stable. The next approximations lead to the appearance of additional
harmonics and to the modulation of the oscillations with a period proportional to A™2, (Thus,
in the one-dimensional case M; = Re E:; A" 22;0 amﬂ(Azy) exp(ilky) ; 810 = 0 all the func-

I
tions a_ . are linearly independent to the exclusion of solutions that increase with y in the

next higier approximations.) The expansion of Ft in powers of A (which can be obtained by
simply substituting (4) in (2) and in (3), the latter being written out up to sixth order
in My inclusive), has near T; the same form as the ILandau expansion [4], but starts with A%:
F, = Fg + a(T - T;)A* + vA® + ... and leads (after minimization with respect to A) to a
third-order transition with a relative jump of the order of A in the derivative of the elec-
tronic specific heat with respect to the temperature. (My = O, and therefore it is immate-

rial whether the independent variable in (2) is H or B.)
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2. Since L; is even and therefore (4) gives a pair of solutions *k, it is of interest
to investigate the degeneracy point k = O (T = Ts), near which (see (%)) 4nxX +» 1 and M, varies
infinitely slowly. Using this, we expand £ (see (2)) in*gowers of dB/dy (for simplicity,
we denonstrate the solution for the one-dimensional case : ft = ft(B) - (1/2)pB'23, with
B determined by the minimum of F, (thus, (1) follows from the minimization of (2)). This
means that ft differs only in sign from the Iangrange function of one-dimensional particle
motion (with B, y, @, and fi(B) playing respectively the role of the coordinate, time, mass
(of arbitrary sign) and potential energy) - & problem whose solution is well known (see [7];
thus, Y-y = +[[20(B - fO(B)]" dB; B = const - "total energy"). In the homogeneous case
ar2 /9B, = 0 and since 32e° /8132 0 when UnX = 1, we must have BsfS/BBg = 0 and 641‘2/8B6 >0

for the minimum of fg This determines, by the same token, BO, To, and HO = B, - Ll-er(BO).

H, £
%3110 1.2p

Ti=T;(Hy)

Q ,

/ > A—/ﬁﬂ; (Hy)
[~

N

/[_\:

Fig. 1

Expanding f(,z (B - H)Z/(8x) + fO(B) + (H2/8x) in powers of By = B - B, and Ty = T - Ta, We

get f = f (B o T, ) + ayTy + (a.aTl - Hy/bn)B; + (1/2)asTyBf + (1/1;)0..,131, ay > 0. From
Fig. 1 (where Hl(B,_) is obtained from Bfo/BB,_ = 0; for concreteness a, and ag < 0; the
circles denote solutions that are stable for a specified H in the homogeneous case; the
curves are similar to the -p = -p(v) curves near the liquid-vapor critical point), it is
clear that the phase transition (when H; < 0) corresponds either (H; < O) to the case con-
sidered in item 1, or (H; = O0) - even in the homogeneous case - to a transition of the "4/3"
type when T; = 0, i.e., F = -m4/3, and the specific heat is c, = T32/2 (in the case of one
zone, when d, = 0 - to a second-order transition). We call attention to the "domain solu-
tion" which arises (if the "mass" ¢ < O0) when Ty = Ty(H;) (with ft(Bl) = ft(Bz), since

B{ = BL = 0), and which was first indicated in [8], and to the fact that the maximum ampli-
tude of the oscillation is bounded when ¢ < O.
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3. The transition from the homogeneous to the inhomogeneous case can be connected with
the occurrence (when T = T5) of proper solutions of Egs. (2) and (3) when the energy con-
nected with the inhomogeneity is already essentially negative. Since growing solutions (with
"complex wave vector") exist for real equations only in pairs, the necessary condition for
the transition point is double degeneracy. It is easy to verify that the eigenfunctions can
be produced with infinitesimally small amplitude A ~ (|Ty]|3)%/2Ty = T - Ts. The solution, in
analogy with the one given in item 1, should be taken only in the zeroth approximeation in
the form (&) with T = T5 (when k = k, and Li(ko) = 0), and it must be recognized that (in
dimensionless units) A|Ty| ~ A2 ~ A". On going through Tz we have 8F, ~ A* ~ 72 and a second-
order phase transition takes place with a Iandau jump of the specific heat [4].

Iet us consider, finally, the case when the eigenfunctions are produced at T zTO directly

with a finite amplitude A_ and a period \ fo(;) (see Fig. 2, which shows the

0 03 Malguy, =
domain in A and T in which eigenvalues N = N(A, T) exist; in the general case A is an arbi-
trary constant of the equation, which goes over into the amplitude when A - 0).

In an infinite sample this would lead to a jump of Ft’ meaning to
a negative specific heat .y a state which is absolutely unstable. We A
must therefore take into account magnetostriction and use the thermo-

dynamic potential ¢(pT). When A # O the phase transition is iso-

morphic and of first order (the relative adiabatic change in tempera- l
ture due to the latent heat is of the order of A), since Ty = To(v),

s

and the periodic solution continues until the values of ¢ coincide in
the homogeneous and inhomogeneous states. The specific volume v (i.e., Fig. 2
the period of the crystal lattice) and the electron density are also periodic and have the
same period as the magnetic structure: v(r) = 5¢/dp (p - pressure).

Mathematically, the problem of determining M; reduces to a solution in the vicinity of
T, of the functional equation E{TO + Ty ML) = fb{Mll + Tlil(Mll = O, We shall seek M in
the form

Ml(r) =flr; A + M Ty +T) = folr) +Apg(r) +Tyh(r)+ 7/2/\21q(r)=
=fo(r) + A 9(r) + H(r), ()
Of course, such an expansion in terms of A; can be used, strictly speaking, only in
regions of r which are small compared with x;l; however, since the nonlocalities connected
with distances of the order of the Larmor radius, and A1 - », this condition is sufficient,
and it is only necessary to "invert" the resultant solution to f(r; Ao * A1y Ty + Ty). Sub-
stituting the expansion (5) into the equation and stipulating that there is no term linear
in Ny, we get g(r) = AlG(;), where G(be/afb)(;) = 0. Equality of the periods in G(;) and
fb(;), namely A fo (T, A) = k(G)(T), i.e., over the eigenvalues of the corresponding equa-
tions, yields T = T(A), and the extremal points T(A) yield Ty» Ay 8nd Ag.

The function H(r) is determined from
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5L, 1 82,

-"——H(r)——T Llfo}— -AA1~~——GH) . (6)

5f, 2 0
Since the corresponding homogeneous linear equation which determines G has a nontrivial
solution, it is necessary that the right side of (6) be orthogonal to the solution of the
corresponding transposed homogeneous equation. This determines the connection between \,,
Ty, and A;, i.e., Ay = A1(T1, A1), and Ay = O yields AT®* = ATP¥(T,).

A1l the foregoing transitions and structures are connected with oscillating M(BO) and
are periodiec in H. Of course, to observe them experimentally it is necessary that the ex-
ternal magnetic field be stable in time and that the mosaic structure of the crystal be weak.
Using the foregoing results, we can easily obtain also the true "equation of state" of the
magnet - a single-valued function M = M(H, T; ;) in the entire region of H and T. Since the
origin of MO is immaterial, these should hold also for ferromagnetic metals.

In alternating fields of frequency w, with wt << 1 (T - electron mean free path time),
the appearance and vanishing of a periodic structure leads to singularities in the high-

frequency characteristics of the magnet.
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In a typical field-theory problem (charges in vacuum), we have here "self averaging"
of Hmicro over the orbits of different electrons, the distances between which are a << r,
a/r ~ N"2/3, and N is in Fermi statistics of the order of the particle number. We note that
the inhomogeneity leads (owing to the constancy of the chemical potential) to the appearance
of an electric field with potential o ~ e 'HZX2a%), where X is the susceptibility, A
~ (ehH/cSext)l/a, and S__,
that the effects considered below are possible also when (BH/BB)min =1 - unxmax > 0.

A general formula which yields all the Ki and Li (and which can be conveniently

is the extremal area of the Fermi-surface section. We emphasize

derived by using quantization {5]) has, in the principal quasiclassical approximation, the

form M = & (M*((B1[y + (cp, - cp)/eB]), ) 5 (), = 2/55[p5(p,)n(p,)ap,, & - mumber of
zone, p - quas1momentum, e(p) =€, € - energy, Ma(B 1 - homogeneous moment from [6]. A
periodic structure exists when k - 0 if 9 1 = -(l/2)(c/eB )22 Sextxapia > 0.
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