In the case of low injection levels at the same temperatures (30°), the relative role
of the radiation connected with electron capture by Zn  increases, and the intensity of the
emission produced when the electrons go over into the valence band decreases (curve III).
Thus, apparently no phononless transitions of electrons to ZnO take place.

The activation energy determined from the position of the emission line for Zno turns
out to be 0.03 eV, in good agreement with the data obtained by other methods [6]. It is ob-
vious that the absence of a barrier in the capture of an electron by ZnO eliminates the dif-
ference between the thermal and optical ionization energies.

It is interesting to note that optical transitions of electrons to different charge
states of Zn in Ge appear in sequence, depending on the temperature interval, in investiga-~
tions of one and the same sample. At low temperatures, when the zinc atoms are in the zZn
charge state, we obviously have a consecutive capture of two holes, so that the zinc atom
goes over into the Zno state (Zn~ + p + p ~ Zno). This is followed by radiative capture of
an electron by the ZnO ion. At higher temperatures, owing to the thermal ejection of holes
from the 0.03 eV level, transitions predominantly to the 0.09 €V level appear.

The authors are grateful to L. V. Keldysh for a fruitful discussion and to V. L. Bonch-

Bruevich and V. A. Chuenkov for useful remarks.
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Recent publications point to an important role played by electron-atom collision pro-
cesses in which the states of two atomic electrons are changed. An example of such a double

process is the ionization of an Ar atom with simultaneous excitation of Ar' (1,27
Ar(3p6)+e-aAr+(3p4L,Si4p)+e+e. (1)

When the atom is described by orthogonal single-electron wave functions, the cross section of

this process in the first Born approximation is equal to zero. The sudden-perturbation ap-

269



proximation is used in [1,3] to estimate the cross section., It is assumed that the knocked-
out electron leaves the atom so rapidly that the state of the remaining atom has not time to
change. The ratio of the cross sections of the double and single processes at high energies
is equal to A%, where A is the non-orthogonality integral of the wave functions of the atom
and ion. Qualitatively similar results are obtained in the first Born approximation if the

non-orthogonality of the atomic functions in the initial and final states is taken into ac-

count [%]. Here, however, the change of the wave function of the knocked-out electron upon

excitation of the ion, and the difference between the thresholds, are taken into account in

a more natural manner.

Since A is small, the first-order cross section UI is also small, and an important role
may be assumed by the second order of perturbation theory, in which (1) is regarded as a
transition through the intermediate levels 3p° Lp and 3p° EI (E and I are the energy and
angular momentum of the knocked-out electron). UII does not depend on A.

The total cross section of the process (1) is equal to

_zfdsk"f+k'i‘§—  IF@EDl?, gek -k, @)
kg ! ko—ky q° L.,S, My, M
vhere € is the threshold energy, and L, S, ML’ and M are the total angular momenta of the
system Ar + e (the subscripts O and 1 refer to the 1n1t1al and final s‘tates)

The scattering amplitude is F = P+ ZF‘I 1 (summation over the intermediate states).
Estimates have shown that the main contributlon to Z.FI is made by a = 3p® EI. If we neglect
furthermore the interference between F and FI » then g = O‘I + cII. We calculated oI in [4].
FiI can be written in the form

e”‘d" + Iklx .

FI(q.k;) = [dRe™RU,  (R)fdx Uy (R ) -~
(3)
U=Z2|R-x |7 k2 ~k§ + 2Eq —E, ) = kI+2E, -E,).
i

When ky = 0 formula (3) simplifies greatly [5]:

Fli(q) = 2 [dRe="9R Uy (R)Q,, (R)dR (%)
a KZ
Q- SlexplivEE, —E,)1r; ~RI-1|R~r; |~ (5)
i
K2-2(E, ~E, )= k& - (6)

On the other hand, using the quasiclassical approximation, we can show that at high energies
FI 1. ;1. Since the practical utilization of (3) entails great difficulty, we shall use an

approximate interpolation formula. Namely, we set F:;I equal to (4), but in lieu of (6) we
assume that

K2=k ky- (7)

al
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This approximation was verified in the case of double excitation of Ca, where an exact cal-
culation of FII is possible [5].

For large (E, - Ea)’ we can neglect the rapidly oscillating gquantity in (6), and then
(6) coincides (accurate to the definition of the factor K) with the known adiabatic approxi-
mation, in which the Green's function [exp(ikax)]/an is replaced by —26(x)/k§. Thus, the
condition for the applicability of the adiabatic approximation, besides smallness of kj, is
that the distance from the final to the intermediate level be large.

Summing over the momenta (in the IS-coupling scheme), integrating over the angles, and

confining ourselves for simplicity in the multipole expansion of Qal’ we get

-

2(I"t\+ l, o0

L ;
sEMLL:"(qHZ AT ]2)\-3&1—2-,\—;‘;_“1 I ¥a Zayip(ar)rdri? )
rA
73] = [ 5o Renlr IRE (e e
-
Z,1(r) = [lik,yigkgyr ) bk, ,>)-_]R3p(, Ry (r°)r*2dr?, (9)
r>
where G is the Racah fractional-parentage coefficient, R3p and th are the semi-empirical
radial functions of Ar(3p®) and Ar (3p* kp), R Ryy is the radial function of the knocked-out
electron in the field of Ar (3p4 p), and 3, and h( ) are spherical .
Bessel and Hankel functions (the latter is complex, but this af- QM-ﬂag
fects the calculations very little). The sum over I in (2) was Gexp
taken up to I = 6. The ratios of the effective excitation cross 908+
sections of the terms Lisi of the initial ion Ar++ are propor-
tional to G2 for ot and to G2A2 for o'. The values of A2 cal- 006 -

culated with the aid of semi-empirical wave functions [6] are:

A2(3P) = 1.4 x 1073, A2(1S) = 3.5 x 10~3, and A2(1D) = 4.5 x 10-3, 404
++

The figure shows plots of 0 and oII for the 3P term of Ar . It

must be noted, however, that A, and consequently also OI, is quite a0z

sensitive to the level energy. In particular, violation of the 0

1 1
40 80 120 160

1S-coupling scheme, which is significant in the case of Ar, leads F oV

to a mixing of terms with different energies, i.e., to an appre-
ciable change in the "effective value" of A. Estimates show that apparently in this case
the cross section UI summed over IS increases considerably, whereas oII remains small.

The same figure shows an experimental curve from a recent paper [7] (the cross section
summed over seven levels). The experimental cross sections exceed the theoretical ones, prob-
ably as a result of violation of the IS coupling and owing to the role of the cascades (the
latter is noted by the authors of [71).

The authors are grateful to L. P. Presnyakov for valuable discussions.
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*
We use atomic units with nag equal to unity for o.
*%
According to (8), only the 2P term is excited in the IS coupling scheme.
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1l. The possibility of observing self-focusing [1-5] and other "self-action” effects of
light [6] is presently connected almost exclusively with the cubic nonlinearity of the de-
pendence of the polarization on the field in liquids, since the latter are characterized by
large values of the increment to the nonlinear polarizability [7,8]. For crystals, the cor-
responding values are usually much lower. In crystals without inversion center, however,
strong self-action is possible as a result of the second-harmonic reaction. In this case
the effects due to anisotropy are distinctive and of interest. We consider below the
peculiarities of such a mechanism and present very simple estimates.,

The interaction of waves having frequencies w and 2w in a quadratic medium leads to the

appearance, at the corresponding frequencies, of the nonlinear-polarization vectors

PQw) =X’(E(;))Ek(w) E;Zw) (a); E,(w) =X§£‘,‘"“’)Ei(“’)5}2“’)(6). (1)

By determining E(am) from (1la) in the given field approximation (which is valid every-
where except in the synchronism directions), and substituting the result in (1b), we obtain

for P;D in a quasi-plane wave an expression of the form
P _ 9. AL A, A ekt 4 pre=itki—ko)r, (@)

Here & is the amplitude of the fundamental wave, and ¥;,- are the values of the wave vector

at the frequencies w and 2w respectively; 8 is a tensor proportional to the product of the
(aw) and i(an-w); Pi is the polarization connected with the proper waves at the

frequency 2w and determined from the boundary conditions. Inasmuch as the crystal dimensions
~ n/|2K; - Ko, the term P can be

”~
tensors X

are usually much larger than the coherence length lcoh
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