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The large and continuously increasing number of hadron resonances observed in recent
years apparently makes it worth while to attempt a theoretical analysis of certain singulari-
ties that arise when two resonant states (appearing in the same reaction) have nearly equal
masses. The problem can be formulated with the aid of the following example: Assume that we
have started to decrease the mass difference of the w and ¢ mesons (known boson resonances with
identical quantum numbers). Is it theoretically possible to make the mass difference mo- m¢
smaller than the width of each of the resconances, and if so, what takes place in this case?

We shall use a phenomenological and sufficiently general approach to clarify these ques-
tions. Assume that two scalar* unstable particles a and b with nearly equal masses (the
analog of "bare" w and ¢ mesons) are created in some reaction with respective smplitudes Ma and
M., and then decay in some state J with amplitudes ri and rd (Fig. 1).
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be separated fram the analogous blocks of Figs. Fig. 2

1b, ¢, d. This can be conveniently done by using the equations shown graphically in Fig. 2.
Similar equations are obtained for the blocks b—{:}-b and > -{3-° by making the substitution
a < b in Fig., 2. In these figures the particle line corresponds to the "propagator" dk(p2) =
[p2 - mi - Hkk(pz)]_l, and the block *——o—% corresponds to the expression 4,1, 4, (i, k =

a, b). The irreducible polarization IIik here no longer contains pole terms, and can be re-
garded as constant near resonance. The functions Mk and rﬂ {k = a, b), which vary slowly within
the resonance width (Fig. 1), can also be regarded as independent of p2. Using the solution of

the algebraic equations on Fig. 2, we obtain for the amplitudes on Fig. 1 the expressions
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(A - sum of contributions of the diagrams of Figs. la,b and B - sum of corresponding contri-
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butions on Figs. lc,d), where A = (p° - m° - Hb) - nabnba’ In these formulas, m + L =m +
I . with k = a, b, The total resonance amplitude of the reaction is equal to the sum of all
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the diasgrams of Fig. 1. It can be represented in the form
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A very important factor in (3) is the dependence on e in the numerator.

Expression (3) contains two complex poles with respect to the variable €, and it is
natural to expand it into two terms containing simple poles corresponding to "diagonal" states
with definite lifetimes and masses, and which appear usually as Breit-Wigner resonances in the
corresponding reaction. On the other hand, if the poles are cloes, i.e., €9 << dl v d2 and
dl - d2 << dl’ then such a diagonalization of the states becomes entirely meaningless, since
the residues at the poles are large (and go to infinity as the poles come closer together). 1In
this case it is necessary to analyze the expression for the reaction amplitude in the form (3).
The possibility of two close or even multiple poles is not excluded theoretically [1] and can
be demonstrated, for example, in the Lie model {see [2]).

Obviously, this closeness of the poles is impossible if any of the main channels of the
J decay is forbidden by selection rules for one of the diagonal states, i.e., the residue at
the corresponding pole in (3) vanishes rigorously (such a situation is realized for K mesons,
where the K2 + 21 decay is forbidg:n by Z:;tue of the symmetry properties of the matrix nik and

the equality of the amplitudes TR =Ty

channel leads in this case to a difference in the total widths, and this will prevent coinci-

. The partial-width difference connected with this

dence of the poles.
It is easy to verify by analyzing (3) that in the case of two close poles (even coincid-
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ing in the limit) the cross section of the reaction, which is proportional to |M|2, has as &
rule two maxima of width ~d. The form of the resonance peaks and the distance between them
depend strongly, via the parameters a and B on the resonance-production conditions (on the
amplitudes M& and Mb’ which are complicated functions of a large number of variables). The
positions of the maxima in the cross section is not connected at all, under these conditions
within the limits of the width, with the "true" mass of each of the resonances, defined as the
real part of the corresponding pole., Splitting of the resonance peak is observed and depends

on the creation conditions even if the "true” masses of the two resonant states strictly coin-
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Fig. 3. Dependence of the absolute value of the amplitude (see
(3)) on the "energy" ¢ at different parameter values; I)eg = O,
4 =dp =1, 8=0.5,0=1.5; II)egg =0, 4 =d, = 1, B = 0.5,

a = 0; III}eg = 0.5, d; =1, 4 = 1.5, 8 = 0.5, a = 0. For the
parameter sets I and III we show also the qualitative form of
the trajectories of the complex vector M as € varies from-=to =,

cide. Figure 3 shows the behavior of the argument and modulus of the amplitude M for certain
values of the parameters in formula (3).

The author thanks V.B. Berestetskii, B. L. Ioffe, and Yu. K. Kobzarev for useful
discussions.
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*Allowance for the spin complicates the problem, but in essence does not change the
results.
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