R X@)
1 -
”ﬂha  ad
b
~H !
]
|
\
|
~H2 1
1 ~H% a |
Fﬁp) 11’1:._ @ }

' gy r~%an r~d,n r~dp H
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with an axis of symmetry not lower than threefold. It is possible to excite here standing
waves connected with helicons with a quadrstic spectrum [2] or with a spectrum w = (vh/§23)kh
(the latter exist if the Fermi surfaces of the electrons and holes are similar). To observe
the resonances it is necessary to have a plate of thickness d << &; for specular boundaries
the heights of the resonances are much higher than for diffuse ones.

In the symmetrical case, near a definite frequency, the impedance of the plate doubles
rapidly, as a result of the vanishing of the "surface” current of one of the surfaces.

k. In a quantizing magnetic field the "surface" conductivity also makes a large contri-
bution (if d s 2) to the total conductivity. The ratio of the amplitude of the Shubnikov -
de Haas oscillations to the total conductivity increases on going from diffuse to specular
boundaries, as was apparently observed experimentally [3].

A distinguishing freature of the ultraquantum case are strong Sondheimer oscillations
(their magnitude relative to the monotonic part of the resistance exceeds the classical value
by a factor d/r). Measurement of their period determines the dependence of the number of
charges on the magnetic field in the case of overlapping bands (cf. [4]).

StSE plays an important role in other phenomena, too, for example in thermal conducti-
vity and in surface excitation of sound.
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The question of sound absorption near the X point was considered by Landau and Khalatnikov

[1] on the basis of the Landau theory of phase transitions (see [2]). It has been shown
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experimentally [3] that the Landau thermodynamic theory is not applicable to the case of the
A transition. We shall therefore consider this question again, and show that the result of
Landeu and Khalatnikov remains valid, in a certain sense, under much broader assumptions.

We assume that the critical phenomena are described by only one characteristic length
£, which coincides with the correlation radius of the phase of the wave function. This
assumption is satisfied in the theory of static and dynamic similarity (see [4, 5]). However,
there are also other possibilities of realizing our main assumption. In particular, it
agrees with the Landau theory.

The dissipation mechanism consists of transfer of the energy of first sound to the second
sound; the latter behaves anomalously near the transition point: its velocity u, decreases,
and the order of magnitude of the region of the wave vectors k, in which it is defined, equals
6_1. Ordinary sound (density oscillations) does not play an importent role in critical phe-
nomena. It can therefore be expected that the dissipation is determined only by a single cha-
racteristic frequency 1/t, which equals u2/£ in the case of He II (see [6]).

We shall show that under the foregoing assumption the dependence of 1/t on ¢ = (T- TA)/TA
is universal, i.e., it contains no critical indices. As in the theory of [1], 1/t ~ e. Indeed
the quantity ﬁzlmelvwlz is proportional t0‘h2p3/m2E2, the singular part of the thermodynamic
potential ¢. Therefore ‘ﬁzps/maT)‘pezi2 behaves like the singular part of the specific heat C.

We shall use the well known expression for ug (see [T]): ug = psoeT/pnC (¢ ~ entropy and
p, - normal density). The foregoing relations lead to the universal law 1/1 ~ (mTAo/h)e. The
maximum sound absorption occurs in the frequency region wt v 1, We emphasize that first sound
exists both at lower and at highefr freguencies. It is meaningful to examine it up to frequen-
cies on the order of the interatomic-collision frequency Va >> 1/1. Second sound, on the
other hand, exists only up to wt v 1. This coincides with the estimate k& ~ 1 assumed in
dynamic similarity_theory [5]. The kinetic equation describing the approach of a parameter of

the order of ¢ to the equilibrium state is of the form

ih K- = <iA 9 my + nondissipative terms (1)
-at dp

s

(for details see [8)). It is assumed that at low frequencies of motion the quantity 9y/9t can
be expanded in a series in 3¢/3ps. This is a natural assumption, inasmuch as the point w = 0
is analytic for any £ # 0. The dimensionless kinetic coefficient A, which describes the
dissipation, should be made up of quantities characterizing the second sound (u2, £) and also
of the quantities m and fi. It is assumed that the attenuation does not depend on the number
of particles nE3 in a volume with linear dimensions £, and consequently it does not depend on
p = nm.l) Inasmuch of the dissipation mechanism consists of transferring energy to second-
sound quanta, it is natural to assume that A ~ u,. All the foregoing leads unambiguoﬁsly to

a formula that is valid accurate to a numerical coefficient, A = mu2€/h. In the Landau theory,

A tends to a constant value at the transition point.

l)The dependence on pg is also eliminated, since it is included by assumption in a¢/8ps.
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Let us estimate the relaxation time:

r'e2A (36/dp,)m/ h) ~(mu £/H)(F2/m2E2)(m/K) ~(v, / £),

which agrees with the aforementioned definition of r.

The propagation of the sound is described by the equations of two-fluid hydrodynamics,
supplemented with Eq. (1) (see [T, 8]). The dispersion-equation solution corresponding to
first sound is

1vi=(1/vd - [(1/vd) - v Nior /(1 +ior), -

2
where u; = w/k, Yo 10

of high-frequency sound {1/t << w << va)}. The difference in the square brackets in formula

is the velocity of the low-frequency sound [u] . = (Bp/ap)“, u, - velocity

(2) is equal to
(1/v3) = (1/02) = o, /o) Hor/arh p2os/0),1(86/30%)1 /0. (3)
The time T in formula (2) equéls

[2Amp /(9% /3p2)

o -'COHIC] ‘l'
In formula (3), the derivative 32¢/8p§ is taken at constant entropy o. Its connection with
the isothermal derivative is

‘3205 /aﬂz) - C/ Cps (32¢ /api)r = const®

o= const

Here Cps is the specific heat at the specified value of Py The subscripts T and p denote
differentiation., The independent variables are chosen to be T and p., At any power-law
dependence of ¢ on €, the terms in the square brackets in (3) cancel out in the prinecipsl
order of magnitude. In the first nonvanishing order in e, the difference uiw - uio = ea,
where o is the critical index of the specific heat. Thus, when the A point is approached the
difference between Uy, and U tends to zero. This is connected with the decrease of the phase
volume of the undamped second sound.

When wt << 1, the damping of the first sound increases with decreasing € like €—1+a, in
sgreement with the measurements of Barmatz and Rudnick [9]. When wt ~ 1, the absorption has
2 maximum. '

It should be noted that the propagation of first sound does not fall into the similarity
pattern in the sence that its frequency is not a homogeneous function of the form w = kY¢(kE).
This is not surprising, inasmuch as first sound carries fluctuations of the density and not of
the phase.

For second sound, in the low-frequency region wt << 1, the dispersion equation is of the

form

v} =0l {1 +ior(3%6 /302 0/arllo,/0) 7 + C/Ty0)2). (4)
We note that the coefficient of iwt does not depend on € at any value of the critical index
o and its order of magnitude is unity. In the case of second sound wt ~ ki, so that Eq. (L)
represents the first two terms of the expansion of w in powers of k&, as is proposed in the

dynamic theory of similarity [5] and is confirmed by experiments of Tyson [6]. In the region
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wt § 1 the equations of hydrodynamics are not applicable to second sound. Formuls (k) shows

that in this region the imaginary part of the frequency becomes comparable with the real part.
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