was determined by the expression obtained from the solution of the second-order secular equa-
tion; the Hamiltonian for the interaction between the electrons and the light was taken in

the form Hi = i*ﬁe/mc(VK), where K is the vector potential of the electromagnetic field, e

and m are the charge and mass of the free electron, and c is the speed of light; the relaxation
processes were taken into account with the aid of a Lorentz function with a parameter y char-

acterizing the smearing of the energy levels, For a cubic crystal we obtained

el

2o

1
o = = psel,
B L2a2 g 88

‘ dx

f
o' 9 VI+x2[( lex2- &' )% +y°2]

v=y/(Me), W' =0/, fe =2 |Vl

Here ng is the number of physically equivalent Bragg planes g, pg is the distance from the
center of the band to the corresponding Bragg plane in momentum space, and w is the eyclic
frequency of the light. The summation is carried out over the physically nonequivalent Bragg
planes.

An analysis of the function o(w) shows it to have maxima at the frequencies Woax =
2|Vg[/t = 2|Vg]. The coefficient t depends on y' and its maximum deviation from unity does
not exceed 6%. A detailed exposition of this theory will be published separately.

Using the results of this theory and the experimental data for aluminum [3] we get:
l = 0.72 * 0.01 eV, lVlll' = 0,22 t 0.03 eV, in good agreement with data obtained from
= 0.76 eV and V = 0.2h4 ev.

200 111
Comparison of the experimental and theoretical absolute values of o{w) shows good

V200

the de Haas - van Alphen effect [L4], namely V

agreement between theory and experiment.
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It is known that investigations of magnetic oscillatory effects (the de Haas - van Alphen
and others) yield valuable information on the structure of the energy spectrum of metals [1].
It is possible to use for this purpose, in principle, oscillatory size effects [2, 3] which
have been observed recently in films of bismuth (4, 5] and antimony [6]. In this paper we

analyze the information obtained by studying oscillatory size effects in metals at an arbit-
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rary quasiparticle dispersion law a(;) (in the quasiclassical case).

The rules for quasiclassical quantization in films, for an arbitrary dispersion law,
were derived by I. Lifshitz [7] and by Nedorezov [8] (see a discussion of earlier work on this
subject in [8]). They take the form (L is the film thickness):

P 1 2 2n
z2=P,=Pg=—(n+y), n=m1,2,3¢.0s 0K y< I, (1)
L

where the p01nts p and p2, shown in the figure, represent two solutions of the equation
(P > Poo Py ) e(p , py, P, ) e with specified 1 and py (the z axis is perpendicular to the
surface of the fllm).

Condition (1) can be written in the equivalent form

2n L L

Ae= —, T = — _ y Vy=d¢/3p,, (2)
T o vl v2 .
[ z z

where A€ is the distance between the quantized levels (i = 1) and TO is the period of the
classical motion of the quasiparticles between the surfaces of the film.

Writing the thermodynamic potential of the metal @ in the form

dp dp u —¢, (P P,)
Q==TZ2f In[1+exp e 7 1, (3)
n (2m)? T

y

where € (p > Py ) are the quasiclassical levels defined by the condition (l) we represent
o _osc

 in the form QO s=le , Where separation of the oscillating terms Q ¢ with the aid of
the Poisson formula leads to the formula (pOL >> 1):
osc 1 P, . d*P, -1/2
Q% (—2)"1 [dety 17 /* sin[sLPS%t(, )~
"2s3L2 du ext api apk ext
—21’31}'/1(»’ (h)
apP, 2
W(A) =NshA, A=wsLT( (=2 T/Ag, ., . ()

du
where (aPZ/au)ext is the extremal value, with respect to Py and py, of the derivative BPz/as
at € = u; Py and Py stand for Py and py.
We see from (3) that the thermodynamic potential, and with it any thermodynamic parameter

of the metal (for example, the compressibility), oscillates with variation of the film thick-

ext(u)

ness, with a period AL = 2n/P where P§Xt(u) is the extremal chord of the Fermi surface

parallel to the normal to the film surface (see the figure). The temperature dependence of

the oscillation amplitude at T 2z B is of the form exp[-2w2T/(AE) ] where, according to (2),

ext
(Ae)ext can be represented in the form

2 1 1
Be) y =— + o (6)
L

ext )
| V: l l sz , ext

1hk



Although we have considered only oscillations of thermodynamic quantities, it is clear
that oscillations of kinetic and other parameters will have the same periods, and their tem-
perature dependence will be determined by the same exponential factors (see [9]).

Thus, a study of oscillatory size effects
2 yields the values of the extremal chords of
Fermi surface P§Xt(u) and the sums of the
reciprocal velocities at the points of inter-

section of the extremal chord with the Fermi

surface. In the case of a centrally-symmetric

&s .
& Fermi surface, it is possible to determine

directly the values of the radius vector of

Ay the Fermi surface in a given direction n,
{4 viz., p = p(?), and the projection v(&) = v.n

exy,
% 6“) of the electron veloecity on this direction.*

Although an experimental investigation
% of the oscillatory size effect is a rather
complicated matter and only the first steps
have been made in this direction [4-6], it
should be noted that in principle this phe-
nomenon affords an opportunity of obtaining most directly information concerning the energy
spectrum of the electrons in a metal.
In conclusion, I am grateful to I. M. Lifshitz and M. I. Kaganov for a discussion of
this work.
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*The situation is more complicated if the Fermi surface is not convex or not singly-con-
nected, Then the equation e(px, Dy s pz) = € with specified py and p, can have more than two
solutions, and the oscillation picture becomes more complicated. O% the other hand, however,
this same circumstance yields additional information concerning the spectrum. Thus, if the
Fermi surface breaks up into a number of individual sections (e.g., the electron and hole
ellipsoids in Bi), then the oscillatory size effect turns out to be sensitive to the relative
arrangement of these regions, and thus can yield information on the positions of similar
sections of the Fermi surface in the reciprocal-lattice unit cell (we note that a similar
possibility was noted earlier in an investigations of the singularities of sound absorption
by metals [10]).
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