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A number of theoretical and experimental papers have been recently devoted to self-focus-
ing of wave beams in nonlinear media. The phenomenon itself was first observed in [1]. Later
experiments (see, e.g., [2-6]) were aimed primarily at establishing the existence of self-
focusing (i.e., narrowing of the beam compared with the initial dimensions, or the presence of
filaments with a divergence that is reduced compared with the diffraction divergence). At the
same time, attempts were made to describe theoretically the propagation of wave beams in non-
linear media [7-11]. The most interesting from the physical point of view, and at the same
time the most difficult mathematically, was the problem of the propagation of a wave beam in
a nonlinear medium with a specified initial (say, Gaussian) intensity distribution. The pub-
lished results of its numerical solution (see, e.g., [9]) only confirm the physically clear
conclusion that the beam is initially narrowed down, but does not determine the subsequent
evolution of the phenomenon. At the same time, it was recently shown [12] that the hitherto-
employed analytic methods were incorrect. Correct analytic results could be obtained [12] only
near the boundary of the medium and only in a narrow range of values of the initial field. By
the same token, the question of the complete picture of the phenomenon remained open, and it
was necessary to resort to a rather accurate and complete numerical solution for its theoreti-
cal clarification.

We present here the results of a numerical solution of the problem of self-focusing of
an axially symmetrical beam. The obtained picture of the phenomenon differs greatly from that
considered earlier. The corresponding solution has been obtained in a sufficiently large
region encompassing the entire self-focusing process. The calculations were made for a
Gaussian initial intensity distribution; the initial phase front was assumed plane, E(r,0) =

Eoexp[—(r2/2a2)]. The starting point was the well known parabolic equation (see, e.g., [11])
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the critical field in the initial sectlon.
The equation (2) with boundary conditions (aX/Qr )l = 0 and |X| bounded as r, + =
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and with initial condition X(O, r ) = expl- (l/2)r ] was solved by the following method:

Equation (2) was approximated by the implicit dlfference scheme
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where XE = X(rn, hk). The condition that the solution be bounded as r, » = was replaced at

some remote point r, = hK by the equivalent relation ax/arl = a(rl)X (see [13]), yielding a

difference relation of the form
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The boundary condition at ry = 0 was analogously replaced by
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Here Qe and al are numbers that are known for each fixed Zq- The system of linear al-

gebraic equations (3) - (5) was solved by a difference approximation method (see, e.g. [1h]).
We succeeded in proving the stability of the difference scheme and the convergence of the
solution of the difference equation to the solution of the differential equation (if the
latter has a sufficient number of derivatives).

The values of the parameter N (the ratio of the initial field to the critical one) were
specified in the interval from O to 10. For each specified value of N we obtained a solution

X(rl, zl). The values of ,X|2 were taken on the axis (i.e., at r, = 0) and at several points

1
rl = 1. It was established as a result that when N < 1 the square of the field intensity on

the axis (|x(0, zl)lg) decreases monotonically when the beam propagates into the medium.
When N > 1 the |X(0, zl)l2 reveals a maximum the position and height of which coincide (when

N - 1 << 1) with the values determined in [12]. When N » N (N, ~ 2) this maximum moves an

1

infinite distance away from the plane z, = 0. On going through the value Nl’ one intense max-

imum remains on the IX(O, Zl)l2 curve, but now it returns from infinity with increasing N,

approaching the boundary z, = 0. On going through some succeeding value N2 > Nl’ a second

Afxd, 2, intense maximum of the axial field appears and moves,

\ like the preceding one, from infinity to the boundary
1= 0 with increasing N. There are similar values
3 < Nh < N ..., passage through which gives rise to a
maximum on the [X(O, zl)‘2 curve; this maximum moves
from infinity to the boundary z) = 0.

Thus, for any fixed N> Nl the axial field has a
finite set of intense maxima. The calculations determined
their positions reliably along the beam axis. At the
same time, the values of the maxima were not vet obtained
with any accuracy (except that they are quite large). The
number of these maxima and their arrangement on the beam
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axis z depend on N. The corresponding dependence and
the general character of the arrangement are illustrated
by the curves of Fig. 1. An essential fact is that only
a fraction of the initial beam power is contained in
0 1 A
! 5 ¥ ¥ each maximum (the fraction decreases with increasing

Fig. 1 number of maxima). An analysis of the field away from
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the axis confirms the assumption that the beam acquires during the course of its propagation
an "annular" structure such that each maximum is obtained by focusing an appropriate annular
region. The latter statement is illustrated by the scheme of Fig. 2. It explains the fact
that the intervals between neighboring maxima are much smaller than the distance from the

boundary z, = 0 to the first maximum.

SRRl

Fig. 2

An important role is played in the entire self-focusing process by the complex variation
of the beam shape, and this determines in final analysis the very complicated character of
the phenomenon. There is apparently a possibility of controlling the self-focusing process by
selecting the initial distribution of the beam.

The authors are grateful to Academician A. A, Dorodnitsyn for interest in the work, and
to Candidate of Physical and Mathematical Sciences A. A. Abramov for & number of important
suggestions pertaining to the method of solving the problem.
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Excitation of internal modes in semiconductor lasers can raise the threshold, lower the
efficiency and the power, and lead to other interactions between the different modes. A con-

venient object for the investigation of the influence of internal modes on the operation of
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