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A number of papers (see, for example [1]) deal with the model of the so=-called "elec-
tronic crystal,"” in which the electrons are in the field of a uniformly-diffuse positive
charge. Account is taken here of the Coulomb interaction of the electrons, but the electrons
as a whole move freely (there is no restoring force between the electrons and the positive
core). The electron density is assumed to be sufficiently small to make the amplitude of the
zero-point oscillations of the electron lattice much smsller than the period.

In {2, 3] they investigated the spectrum of the oscillations of such a crystal., It was
found that in the limit of large wavelengths the oscillation spectrum contains two transverse
branches with a linear dispersion law (w = cek) and a longitudinal branch with plasma fre-
quency (wo). We wish to call attention to the fact that the spectrum of the transverse oscil-
lations wes found in these papers without allowance for the transverse electromagnetic fields
(which are connected with these oscillations), and we shall show in what follows that allow=-
ance for these fields alters the spectrum at low frequencies noticeably.

For long waves we can confine ourselves to the continuous-medium approximation. We
then obtain the following equations of motion and Maxwell's equations for the transverse dis-
placement § and the electric field ﬁ, in which the influence of the electrostatic forces is
accounted for by introducing the transverse elasticity:
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where n is the electron density and c_ the velocity of the transverse "electron sound" [3].
From (1) we obtain for a plane wave exp(~ iwt + ikx) the dispersion relation for the

natural-oscillation frequencies
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Recognizing that ¢ >> c_, we find that two branches of the dispersion equation (2):
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We see that when k << wo/c the spectrum differs appreciably from the acoustic spectrum,
The first branch corresponds to the propagation of transverse optical waves with frequency
below the plasma frequency. The electrons in these oscillations behave almost like free

electrons., The second branch, at small values of k, describes the low~frequency oscillatioms,
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the energy of which is contained mainly in the elastic energy and in the magnetic field. Only
when k >> wO/c do these oscillations go over into sound oscillatioms,

The change of the spectrum at low values of k (w = ccek2/w0) leads to a change of the
thermodynamics of the electronic crystal at low temperatures (for example, the specific heat
is proportional to T3/2), but a more interesting fact, from the point of view, is that the
crystal is transparent to the low-frequency electromagnetic waves (w < wo) (the dielectric

constant € > 0)., Indeed, for the medium under consideration e, is given by

glkyw) = m: /wz - c:kz. ‘hz
At low frequencies w << w, We get from (4) and (3)
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We see from (5) that si_(w) : cz/cezn, and accordingly the transmission coefficient D pd ce/c
<< 1. The largest transmission coefficients correspond to frequencies w ¥ Wy (ce/c).

We have not taken into account anywhere above the dissipative processes. From among
the possible damping mechanism, we take notice of the following two. It is possible that the
damping corresponds to a certain effective viscosity. In this case it is necessary to add
the term vA(3£/3t) in the right side of the equations of motion (1), and then at low frequen-

cies we have
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and the damping at low frequencies is small. It is proportional to the square of the fre-
quency.
On the other hand, if the dissipative procesgses are described by usual friction, then

it is necessary to add the term r‘lag/at in the right side of the equation of motion (1), In

this case
c ck?
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This formula is valid when A << c/ce >> 1, When A{0) << 1, we see that the damping is small
at all frequencies, If A(0) > 1, then we(k) is pure imaginary at low frequencies.
At sufficiently high frequencies (wzr > 1}, however, we have
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and the damping may turn out to be small if c_ >> n”l/B/T.
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In conclusion, we note that a sufficiently ideal electronic system (n-l/3e2 > T), even
if it does not form a crystal, can apparently have a shear modulus at sufficiently large
frequencies w, such that the short-range-order realignment does not have time to occur within
one period of the oscillations. Then passage of transverse electromagnetic waves with

w < w, should be observed at these frequencies (as in an "electronic crystal").
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All papers dealing with the critical current of rigid superconductors contain the
) is absolutely unstable with respect to a

statement that the mixed state (Hcl < H, < Hc

0 2

transport current directed perpendicular to the external magnetic field H In other words,

this means that the transport current interacting with the superconducting vortices exerts on
them Lorentz force and causes them to move in a direction perpendicular to the field and to
the current. This gives rise to energy dissipation and destruction of the superconducting
state. If the material is inhomogeneous, then the vortices become pinned to the inhomogenei-
ties and nondissipative superconducting flow of the transport current is possible,

We note first of all that the statement that the mixed state is absolutely unstable is,
strictly speaking, incorrect. Indeed, it would be valid for amn infinite sample, but even the
surface of a real sample can serve as the homogeneity on which the vortex motion can become
pinned.

We calculate in this paper the critical current for a film placed parallel to an ex~
ternal magnetic field. The film thickness d is assumed small compared with the penetration
depth 8,: d << §,, but d >> ¢ (T), where £(T) = 50/K and k >> 1 (k is the constant of the
Ginzburg-Landau theory [1]). We consider a case when the external magnetic field is
Hy > Hcl(d), but Hy - H_ (a) << Hcl(d). Here Hcl(d) is the first critical field of the film,
which was calculated by Abrikosov in [2]. Let the film be parallel to the (yz) plane and
bounded by the planes x = t d/2, The external magnetic field is directed along the oz axis,
and the transport current flows in the oy direction.

We consider first the case when there is no transport current. Let us find the free
energy of such a configuration of vortices: the axes of all the vortices are parallel to yz,
the points of intersection of the axes of all the vortices with the (xy) plane lie on a single

line parallel to the oy axis and located a distance x, away from it, and the distance a be-

0
tween the axes of the vortices is large dompared with 60. The solution of the equation for
the field
2n ot :
AH=-H == S 8(x-xy)8 (y=-ma)
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