3. In the resonance region, the position of the spectral generation band in the com-
pound resonator is stabilized in the passive plate and consequently changes little in a wide
interval of current density and in the temperature range from 15 to 20°, At a larger temper-
ature rise, the generation switches jumpwise to another band, corresponding . to the neighboring
resonance in the passive plate.

These data show that the compound resonator has undisputed advantages over the ordinary
one when it comes to the spectral characteristics of the SL, Such resonators are also used
to advantage to decrease the scatter in the SL generation wavelengths, and for spectral match-
ing of the SL radiation in multi-element installations.

(1]  Yu. M. Popov and N. N. Shuykin, Fiz. Tekh. Poluprov. [Sov. Phys.-Semicond.] 3, 1969

(in press)

[2] D. A. Kleinman and P. P. Kisliuk, Bell Sys. Tech. J. 41, 453 (1962).

[3] 0. V. Bogdankevich, B, I. Vasil'ev, A. S. Nasibov, A. N. Pechenov, K. P. Fedoseev,
FIAN Preprint No. 40, 1969.
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Recent developments in the theory of pseudopotentials [1] have shown that in many cases
model pseudopotentials are preferable to the so-called "first-principle" pseudopotentials.

The most universal of the known model pseudopotentials is apparently the Heine-Abarenkov-
Animalu (HAA) potential [2 - 5], in which the unknown parameters are determined from spectro-
scopic data, i.e., the experimental information on the properties of the atoms of a given
metal is taken into account on almost the microscopic level.

The main shortcoming of model potentials (including HAA) is that they are usually de-
scribed in ;—space by a discontinuous function. As a result, their Fourier transforms (form
factors) oscillate at large values of gq and do not ensure sufficiently rapid convergence
of the series (or the integrals). When summing over reciprocal space, it is therefore ne-
cessary to introduce artificially a rather arbitrary exponential damping factor [4]. This
shortcoming is felt most strongly in the study of so-called atomic properties of metals
(stability of erystal lattices, in the calculation of phonon spectra, binding energies, ener-
gies of various defects, etc). In this paper we attempt to construct a model pseudopotential
free of the aforementioned shortcoming, i.e., one continuous in ;—space.

We denote by wo(r) the unscreened local pseudopotential produced by one ion. Its form

factor is

1
w’(q) = ‘6—'fd3rw°(r)em'. (1)

[¢]

where Qo is the atomic volume.
Let r, be a certain radius characterizing the dimension of the region of internal elect-

ron shells. It is obvious that when r >> r, any model unscreened potential should behave like
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a Coulomb potential, i.e., wo(r>>rc) = -%Z/r (Z = valence of ion)l). The most important region,
however, is r ¢ T for it is precisely in this region that the behavior of the potential de-
termines the specific characteristics of the given metal. It is known [1] that owing to the
orthogonality of the wave functions of the conduction electrons and the internal-shell elec-
trons in the region r g r, the attraction is fully or partially offset by repulsion, so that
w°(r) may turn out to be finite as r » O (this property is used in the HAA potential), but its
sign is not known beforehand. The behavior of w®(r) in this region determines also the char-
acter of w°(q) when q 2 l/rc. It can be shown [1] that the function w®(q) should decrease
at large values of g no weaker than l/qh. This corresponds to allowance for the orthogonality
of the wave function of the conduction electrons and of the s-functions of the internal shells.
We have thus formulated certain requirements that must be satisfied by the model pseudo-
potential and its form factor. The radial wave functions of the internal shells are expressed
in terms of products of polynomials and exponentials, so that it is reasonsble to seek wo(r)
in the class of exponential-power functions. It is easy to see that the indicated requirements

are satisfied by the simple function2

et /re _ 1

wr) =Zf————+ e e
x ’C

(2)

and its Fourier transform
47Z (2a - l){gr }2-1
wola) = : — . (3)
Q. ¢’llgre)? +112

To determine the unknown parameters a and r, we need two independent equations. We
note that w°(r) is in fact the potential of a "pseudo-ion" with valence Z. It is natural to
require that the ground-state energy of the electron in the field of this model ion coincide
with the corresponding energy for the true ion. In other words, the potential wo(r) should

satisfy the radial Schrodinger equation

d?
(W—w°(r) +E‘)l/lo(") =0, (%)

where E_ is the first ionization potential of the true ion with valence Z - 1, and wo(r) is
the ground-state wave function.

As is known, there are experiments by which the values of the form factor of the
screened pseudopotentials at the first reciprocal-lattice points can be determined. Equating
the theoretical and experimental values of w(q) at some reciprocal-lattice point h, we obtain

the missing second equation:
w(n) = wO(n)/e(n) = wn), (5)
1)

2
)we note that the model potential used by Phillips and Kleinman [6] to describe semi-
conductors belongs to the same class of functions. This potential, however, does not remain
finite as r » 0.

All quantities are given in atomic units (at. un.) throughout.
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(e(q) is the static dielectric constant of the electron gas).

c

The values of & and r

The system (4) and (5) was solved with the "Minsk-22" computer.

imental

1so the exper

lves a

the table, which g

in

obtained for a number of elements are listed

and theoretical values of the form factors, including those for the HAA potential (the values

ing

(4) are those correspond

in

S8

The values assumed for E

satisfying Eq. (5) are underscored).

luded

inc

[5], a correction was

as in

to the spectroscopic values for the free ions (for Pb,

the function e€(q), with exchange and correlation corrections,

2

for the spin-orbit interaction)
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was assumed to be the same as in [4].
For the metals considered, a > 1; as

seen from (1), this means that in the region

q/2n, re<r, the electrons are not attracted, but re-
pelled. Figure la shows schematically for
comparison, plots of w'(r) and wo(r)HAA. Figures
1b and lc show the form factor w(q) of our
potential and w(q)HAA for aluminum. The points
and crosses denote the experimental values taken

respectively from [9] and [8].

An important characteristic of the pseudo-

Ty potential is the quantity q, - the zero of w(q)
(the first zero in the case of the HAA form

factor) [7]. As seen from the table,the values

P

of a5 corresponding to this potential are very close to 9 HaA (the latter are regarded as
reliable and are frequently used to "trim" other model potentials). We see also that the
values of w(q) at those points not used in (5) are in good agreement with the corresponding
experimental values.

It is hoped that the proposed model pseudopotential proves useful in the study of many
properties of metals, including atomic properties.

The authors are grateful to G. P. Motulevich and L, V. Keldysh for a discussion.
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Recent experiments on vector-meson production in colliding electron-positron beams, and
also the accumulation of a large amount of data on vector-meson photoproduction, have led
to an increased interest in a verifications of the vector-dominance model, which is in satis-
factory agreement with the majority of the experimental results [1, 2]. For the ratios of

the probabilities of the decays w - 37, w > 7wy, and 70 » 2y, the predictions obtained in the
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