left scattering asymmetry of the investigated particles, the magnitude and the sign of
the polarization of p from reaction (1), the sign of the polarization of 3H from reaction
(1), and also the sign of the polarization of SHe from reaction (2).
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As is well known, a ferromagnet in the non-magnetized state is stratified into domains
[1]. The saturation magnetic moment inside each domain equals M0 = M0 (T) ~ lO2 - 103 Oe,
In the transition region between the domains, the magnetic-moment vector is rotated through
an angle correspending to the domain structure. The width of the transition region (the
domain wall) is & ~ 107 - 10'6 cm. The induction B = LnM is thus homogeneous inside the
domain and inhomogeneous in the domain wall. In & ferromagnet, the induction field B
plays the role of an external magnetic field relative to the conduction electrons. The
characteristic size of the orbit in the homogeneous induction field %0 - hnﬁo is R ~ 1072 -
lO'h em, i.e., R >> §. This makes it possible to identify the conduction electrons by the
character of their motion, in the following manner. One group of electrons moves without
crossing the domain wall, i.e., in a homogeneous induction field., The other group (near
the domain wall) crosses the region of the inhomogeneous induction field; these electrons
"feel" the field ﬁl and the field ﬁé (%l and §2 are the induction vectors in the neighboring
domains).

We consider in this paper the quantization of the conduction~electron energy near
the domain wall, We recall that the quantization of electron energy inside the domains is
well known (Landau quantization) [2]. Of course, it is necessary here to satisfy the
condition Qt >> 1, where Q = eBO/mc is the cyclotron frequency and t is the electron free-
path time,

It is clear from the foregoing that the motion of electrons in a ferromagnet is de-
termined by the domain structure, i.e., by the relative orientations of ﬁl, 32, and the
domain wall. The domain structure can be of one of two types: 1) The projections B

and B2y’ of the induction vectors El and 52 on the direction perpendicular to the domain
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Fig. 1. Trajectory of electron motion near the domain
wall: a) 4 >> &, b) A << &,

<
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wall {the y axis) are not equal to zero (then B, = B2y = By by virtue of aivd = 0). 2)
The projections of the inductions vectors ﬁl and -]:’:2 on the y axis are Bly = B2y = 0,

In the domain structure of the first kind, the motion of the electrons is in general
infinite and aperiodic, owing to the presence of the By components. As is well known, such
a motion is not quantized.

Let us consider the other type of domain structure. The motion of the electrons in

->
the fields B, and B, in the y direction is finite. As a result, the motion in the direction

transverse ti the dimain wvall is finite and periodic. Such a motion is quantized, and
energy levels are produced spaced a distance Aen ~ fiw apart (w is the frequency of the
corresponding classical motion). Let us now estimate the order of magnitude of w for the
electrons near the domain wall in the simplest case. Let the electrons have a guadratic
dispersion law, El = -§2 = §0 and A >> §, where § is the characteristic dimension of the
transverse motion of the electrons. It is then clear that w = Qn/2¢ (see Fig. 1); if

A << R, then ¢ ~ /A/R << 1 and w ~ @ VR/d >> Q. Thus, Ae, ™ hQ YR/A >> 40, In a field

o .
B0 v 10T - 103 Oe we have Aen ~ 1 - 10°, It is easily seen that the level system which we

consider as an example, and which arises in the domain structure with Bl = -B2, is similar
to the system of magnetic surface levels, The exact correspondence is established by the
formula edom(n) = e ur (n/2).

It should be noted that,owing to the spin, near the domain wall the conduction electron
interacts via exchange with the spin system of the ferromagnet, which is inhomogeneous in
the wall., The energy of this interaction is of the order of eo(a/é)z, where £, v th deg
is the Fermi energy and a is the interatomic distance. Thus, Aec >> eo(a/6)2 and the ex-
change interaction with the wall spins can be neglected.

We consider now the solution of the classical problem of electren motion in a domain
structure of the second kind, assuming for simplicity a quadratic dispersion law, The
motion of the particle in the magnetic field is described by the Hamiltonian equation

oH aH

t=—— 1 (1)

b= -—,
Jr ap
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where H = (P = eA/c)2/2m. As already mentioned, B = B(y) = curl Z. By virtue of the fact

that [Bll = [B2| = lnrMO, the z axis can be chosen such that BZ(O) = 0, Then BZ(+°°) = -B,
- o _ 2 .2 .2 : )

(=) = B, B,(~=) = =B (+=) = B_, and B_ + B, = By. We take the vector potential X in the

form
y L4 Y ’,
A(y) = -[B dy", A, =[B.dy", A =0,
Since Py = py, we obtain for the function H the expression
2

=2 '

=5——t+Uly),
where

e

Uty) =;,l; (- =) +(r - :—A,)Z' .

From (1) we obtain

e e
Px =p - A, (y) =const, P, =p,  + - A (y) =const,

p?

—x , Uly) =E.

o

-m

Thus, the motion of the electron along the y axis has been reduced to uniform motion

of a particle in a field U(y) with energy E at specified P_and P, Substituting the so-
lution of this problem in (2), we can readily obtain the electron motion along the x and
z axes. We consider now in greater detail the case A >> §. Then Ax = szyl, Az = Bxy, and

we obtain for the field U(y) the expression

PI+PI  mdy?  mFly-y,)
o

Uly) = .
where 2m 2 2
eB ByF, - B,Fsigny B, R, = B,R,signy
Q- ' YT e 2 - B '
mc —— R o °

c

Depending on the value of 4 = yo(y < Q) -y > 0), the field U(y) has a different character
(see Fig, 2). It is easily found that w(d > 0) > w(d = 0) = @ > w (d < 0), where w is

the frequency of the oscillations in the field U(y). 1In the case & << R(d < 0) we have
w~ @ VR/B. For a domain structure with B, =0 (Bl = B2) we get U(y) = U(-y).

u(y) Wy) Uty
Fig. 2, The field U(y) is represented by the \ l \ !
solid line. Depending on the sign of 4, it \|/ \ !
consists of different parts of two identical \ l
parsbolic potential wells: a) d < 0, b) 4 = 0, \ ]
c) a>o. - b | WY
A A] | y [ ="
a b c
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Let us consider now the case A << §, DNear the origin, in the zeroth approximation in
A/8, we have Bx(y) = B! and Bz(y) = B;(y/d), where B! v B} v B,. From this we cbtain for
the vector potential A and the field U(y) the expression

2
A =-BYX_, A =8By,

x r 95"’ z x

prep? BleP , BIPB\t .
KR +_=__~_(y_ )
U = " mes B°P,
2 2 2
PP+’ ma’ R°
x z x , 2
ST Ty T (r-elt

Ifr Px > 0 and B}'{Pz/BéPx ~ Pz/Px << 1, then the motion along the axis takes place in a po-

tential well and the condition 4 << § is fulfilled. It is clear that the motion in the
field U(y) is a harmonic oscillation with frequency w = Q' V§;7§ > Q' - 0.

The foregoing solution of the classical problem can be generalized in a natural manner
to include the quantum case by making ﬁse substitution Py > §y = ~if (5/3y) and solving
the Schrodinger equation in the field U{y). The resultant quantization of the energy levels
is of interest only in the quasiclassical region, and is obtained from the formula ﬁpydy =

2mh. In the case A >> § we have

P2+ p? 3w \2/3 173 pg %3
€ = L_!_*(_._) (nﬁﬂ)u‘,' i ) zx .
n
2m 2m P Bx

If Bl = -B2, we obtain from this

-

P2+ P2 ;% 273 F, \1/3
¢ a it —=% +(—'-) (059)2/3(7,—) .
a -m

n 2m

For the case A << § we get

2, 52 /o - 2, p2 kB' P
Px'l'Pz . 5!-- P,""Pz.'.n'h z. x'
€n " m 0 8 2m micd

n 2

Thus, the distance between the energy levels arising near the domain walls is
Aen = /35575, and for an electron moving inside the wall we have A = §; on the other hand,
when A >> § the character of the spectrum (the dependence on n, P , and Pz) differs from
that of the case A << &,

The existence of the considered energy levels leads, for example, to resonant absorp-
tion of ultrasound (w ~ lOlO - lOll sec-l). A detailed discussion of this effect will be

presented in a later paper,
I am grateful to M. Ya. Azbel' and I. E. Dzyaloshinskii for valuable discussions.
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