f < 0,1 V/em. Experimental studies of the shift of the energy levels of atomic positronium
in gases (so far there are experimental data only for argon at pressures somewhat higher
than atmospheric and at a temperature 300°K [11]) can answer the question concerning the
concrete substances in which the indicated value of 5 is realized.

I am grateful to V. I. Gol'danskii, F. I. Fedorov, and V. P. Shantarovich for

fruitful discussions.
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STRUCTURE OF LAMB DIP FOR LONG-LIVED SYSTEMS IN SPATIALLY BOUNDED FIELDS
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The most promising method of stabilizing the frequency of laser radiation is based
on the use of an ebsorbing gas cell [l - 3]. The spectral width of the output-power peak,
against which the stabilization is effected, is determined by the time of coherent in-
teraction of the atomic system with the field., In this connection, particular interest
attaches to the long-lived systems, i.e., with small level width I'. Molecule-beam lasers
have been analyzed in a number of papers (cf., e.g., (4, 5]). The spectral width of the
power peek is determined here only by the time of flight T of the light wave for the average
thermal velocity 7, if T << 1/1. This raises naturally the question whether this result
is general or whether it is possible to construct lasers in which the parameters of the
spectral structures are determined by the value of I' in spite of the fact that I' << 1/t1.
It will be shown below that in ordinary (not beam) systems, at a certain field configura-
tion, the decisive role is plsyed not by the mean-thermal atoms but by the slow ones, for
which the time of flight is larger than or of the order of 1/I'. Consequently, such lasers
can be constructed.

The stationary equations for the density matrix, in the case of a standing mono=-

chromatic wave, are given by
a ;

) —_ —_ . = q. i kzl; j=
(lj +Vaz +uax) Pj=q (u, v) t2Re i G(x) p, cos zl j=myn

Lot



d
(Tr-iQ+ b +u3x—) Pmn = 1G(X) (P —Pp) c08 k2; Q= -0p,, (1)

where v and u ere the z and x components of the velocity and q:j is the rate of excitation
of the level ). The dependence of the field amplitude on the transverse coordinate x is
chosen for simplicity in the form
G for 0sxg&
G(x)= (2)
0 for other x.
The power of the stimulated emission (with allowance for the first-order correction for

saturation), averaged over v and x in the interval (0, &), is
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Let us analyze Eq.(3) in the case I'T = I'/V << 1 of interest to us. For atoms with veloci-

ties u > T4 we have

62£2
<p(r)> =p, (1- - ;7)' ()
From atoms with u < T{ we have
62 1 1 r?
<p(r)>,=p, 11—;—1-_‘—('1:-;""?)(1*' F2+Q?)}. (5)

The frequency dependence for slow atoms coincides, as it should, with that of the usual
"homogeneous" problem. Let us compare the orders of msgnitude of the contributions of the
various atoms to that term of (3) which is responsible for the Lamb dip, averaging over
the transverse velocities u with various characteristic distributions W(u) (I = l"m = I‘n;
2 =0):

W(u) u»(l—‘z u> r“t
2 -
u ¥ 1 7
L 6% — — &= (6)
vrv r 3 r
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2u - — 2-2 —1ln — (6')
.:Vrt v2 G°r p 7
2 "2 1 1 (6")
el —e?rs# —a?7,



It is seen from (6) that only in the third case is it possible to neglect the role of the
slow atoms in the determination of the structure of the Lamb dip. In the first case, on
the other hand, their contribution is predominent. Finally, in the second case the
effective velocity interval is larger than I'f but much smaller than v.

Thus, depending on the weight with which the slow atoms enter in the distribution of
the velocities u, they can make a predominat, a noticeable, or a negligible contribution
to the form of the Lamb dip.

Let us consider four types of field configurations of the standing light wave: 1)
the light wave is not bounded in all directions (the well-known "homogeneous" problem):
2) the one-dimensional problem - limitation only in the x direction, 3) the two-dimensional
problem - X and y are bounded; 4) the three-dimensional problem - x, y, and z bounded, but’
the resonator length is much larger than the wavelength A = 2n/k. In case 2) the averaging
over u must obviously be made with the distribution (6), while in cases 3) and 4) the
distribution (6') must be used.

Let us write out the formulas for the amplitude of the steady~state field near the

generation threshold (I = r =T @ T << 1):

r?
2 -
G /FZ =2(n-1) (1 + 2 :—(—)T) 1 —"homogeneous problem, (7)
o — arctg (UT) |
G2,/I"=2\/n(n—-1) (1+ —————— )1 _ one_dimensional problem, (8)
r
9.2 8(n-1) W7 yi+Q%r?
G7° - — 1+ ~ } "= two- and three-
1 1 ’ In I'f dimensional problem, (9)

n
'y

Here n is the excess of excitation above threshold.
In the one-dimensional case, just as in the "homogeneous" one, the width of the dip
is determined by I'y and in the two- and three-dimensional cases it is determined by
(F?)l/a, and not by 1/T as in beam systems. When I'T << 1 we cbviously have (r/?)l/e << 1/T.
The reliability of the "matching” of the resonator to the transition frequency w
is determined by the curvature of the dip at its center. Near the center of the dip, i.e.,
vhen Q/T << 1, we have respectively

2 0?
G*~ 1 . (lo)
21'2
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G2 1+ -—---Si-——- (12)
4r? 1o (1/T7)

In (10) and (11), the second derivative is proportional to F2, i.e., it is inversely pro-
proportional to the square of the width of the dip. In the two-dimensional and three-
dimensional cases, which are of practical importance, the second derivative equals (2r2 in
l/I‘?)'l whereas the reciprocal of the half-width squared is T/F. Their ratio is (2T 1n
l/F?)-l, so that the parameter determining the reliability of the frequency stebilization
may be much smaller then the width of the dip and is determined, in practice, by the level
width T.
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Many problems describing the propagation of nonlinear waves in dispersive media re-

duce to the Korteveg - de Vries equation [1]

vt+vx+vvx+vux=0 (1)

The existing algorithm [2, 3] for the construction of solutions of (1) fail in practice in
those cases when the initial profile v(x, 0) has a complicated form and leads to the for-

mation of a large number of solitary waves (solitons):
v-3axh? [Va(x-utj/2}, a=u-1>0, (2)

where u is the wave velocity,'and we assume that a << 1. At the same time, such a situation
is characteristic of a turbulent medium, and its investigation is of appreciable interest.

We develop below a statistical method for the investigation of (1), leading to the possible
use of the concept of a Boltzmann 'gas" of solitons.

The Hamiltonian formalism for (1) is of the form

1 1
H ry 7 dq(1-4%) v(a) v(- @) + ;—J‘ dqy dqydqzv(a;) v(ay) v(23) 8(qg+ap+ay)

, & H (3)
v fdge' ¥ v(q); v(-q) =vN@); ¥(9) =iq .
_ Sv(-q)
We consider a "ges" made up of a large number of solitons, the distance between which is
on the average much larger than the characteristic width of the solitons a-l/a. We re-

present H in the form
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