[1] C. Gardner, Annual Report, Princeton MATT-Q-2L, 329 (1966).

[2]  Yu. A. Berezin and V. I. Karpman, Zh. Eksp. Teor. Fiz. 51, 1557 (1966) [Sov. Phys.-~
JETP 24, 1049 (1967)]. -

C. Gardner, J. Greene, M. Kruskal, and R. Miura, Phys. Rev. Lett. 19, 1095 (1967).
I. M. Lifshitz, Usp. Fiz. Nauk 83, 617 (1964) [Sov. Phys.-Usp. T, Sk9 (1965)].

B. I. Halperin, Phys. Rev. 139, 194A,(1965). -

J. Zittartz and J. S. Langer, Phys. Rev. 148, Tkl (1966).

APPROXIMATE SOLUTION OF THE THREE-BODY PROBLEM WITH A LOCAL POTENTIAL

B. Akhmatkhodzhaevl), V. B, Belyaev, and E. Wrzecionkog)

Joint Institute for a HNuclear Research
Submitted 5 May 1969
ZhETF Pis. Red. 9, No. 12, 692 - 694 (20 June 1969)

As is well known, to solve the Faddeev equations it is necessary to know the behavior
of the two-particle T-matrix off the mass shell. We shall point out one possibility of
constructing such a T-matrix. Assume that we have a local short-range potential V(r). The

f-th harmonic of the Fourier transform of this potential is given by
Vohok') = —— T ioke) i) ¥ ()52 (1)
k)= 3 i{.-3( 1) jgkn) V (r)r-cs

We shall approximate the local potential VSL (k, k') by the aggregate of nonlocal potentials,
using the Bateman method [1}. We obtain the following expression for the approximating

potential V, (ky, k*):

Vohk') = T, [0 k)N, (2)

The solution of the Lippman-Schwinger equation with potential V, (k, k') is
Ty(k,k',2) = Te[C(2) O(k,k' )]
where . .
0” ok ) = Vo(k,s) Vo(k ,'sj),
d;; = Velsyisy,

() = T K2dk
° k° - \/2u122 - ie

C'.j (z) =[(d+ %8 7uy9 I)_l] ij’

s, are parameters, i, jJ = 1, eve, 0, and u is the reduced mass of the repelling particles.

i 12

It is seexj from (2) that when k and k' equals one of the parameters Si» the approxi-
mate potential Vl(k, k') coincides with the local potential (1). It is clear that if the
points s gre uniformly distributed along the axes k and k' and if n + «, the approximate
potential Vl(k‘ k') approaches the local potential (1). For most of the short-range poten-
tials used in the calculations, we can confine ourselves to values of n that do not differ
strongly from unity. This is possible as a result of the smoothness of the function

VIL(k’ k') with respect to the variables k and k'. From the condition that the integral
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be small and the integral of the resolvent of the Lippman-Schwinger equation must be
bounded, it follows that the T-matrix (3) differs little from the solution of the Lippman~
Schwinger equation with the local potential V(k, k'). Thus, the T-matrix (3) has the
correct behavior both on and off the mass shell. The smaller the coupling constant, the
better this estimate of the approximate T-matrix (3). It follows therefore thet a calcu~
lation of the binding energy of the 3-body system with T-matrix (3) will be the more

accurate, the smaller the coupling constant. This is indeed the situation observed in [3]
and in the present work,

A 1. 2 3 4
1,6 0,25 0,2621 0,3015 0,348
2,0 0,33 0,587 0,6798 0,708
2,4 0,41 0,8666 1,0376 1,086
2,8 0,49 1,119 1,385 1,449
4,0 6,73 1,689 2,389 2,468

The T-matrix (3) with n = 1, 2, 3, and 4 was used to solve the Faddeev equations
for a system of three spinless particles interacting via a Yukawa potential V(r) = G[e " /r].
The higher configurations in the relative two-particle motion were disregarded, since their
contribution, as estimated in {2], is negligibly small. We calculated the dependence of
the binding energy of the system on the coupling constant G, The parameters of the po-
tential were chosen to be the same as in [3]. Just as in the calculations with a local
potential {3], three levels appear for n = 2, 3 and 4. The table lists the values of
o [|ujum2]*?
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