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At low temperatures, all quantities in a metallic single crystal are rapidly oscil-
lating functions of the induction ﬁ, and not of the external magnetic field H. The small
difference B - H = 4xM can become comparable with the oscillation period 4B and must be taken
into account (ﬁ is the magnetization) [1-3]. It will be shown below that this causes an ap-
preciable change in the form of the quantum oscillations of the resistance, leading even to
the appearance of various anomalies. In addition, when diamagnetic domains appear in the
sample [3], a change takes place in the character of the asymptotic behavior of the classical
part of the electric-conductivity tensor, owing to the drift of the electrons in the inhomo-
geneous magnetic field near the domain boundaries (this is equivalent to the appearance of a
layer of open trajectories). The accompanying resistance jumps can exceed in magnitude the
Shubnikov oscillations and should be observed experimentally as an entirely new type of re-
sistance oscillations.

We consider for simplicity a case when the contribution to the Shubnikov oscillations

is made by one section. The form of the oscillations is determined by the equations
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Here @ is the phase shift between the oscillations of the electric conductivity and of the
moment. If ¢ = O, then the oscillations of UOSC(H) and M(H) have the same form. If @ # O
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samples, then the electrons crossing the domain walls drift transversely to the magnetic field
(along the domain walls) (Fig. 1). The drift velocity is Var ~ vFRVH/H (71, where Ve is the
Fermi velocity and R the larmor radius. Since the width of the transition region between
domains is proportional to R, we have v, . ~ thﬂM/H.

To estimate the additional electric conductivity Acik connected with the drift, we use

the well known formula for the electric conductivity in a magnetic field [4]
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where nF(e) is the Fermi distribution, dI' the phase-volume element, T the Larmor radius, and
2
v the collision frequency. With the axes arranged as in Fig. 1 we have onx ~ Uo(vdr/vF) »

where % is the electric conductivity in the absence of the magnetic field. To estimate the

value Exx averaged over the sample it is necessary to multiply this expression by R/d, where
d is the domain width, i.e., -A_cxx ~ ao(hnM/H)eR/d, with the remaining components Ta-ik =~ 0.
The asymptotic form of the transverse part of the electric conductivity tensor has in

the absence of drift the form [4]
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vy = R/t, { is the mean free path, and & ™ % (y << 1).

Cases a and b correspond to close}; sections (in a the number of electrons is equal to
the number of holes, in b it is not); in case ¢ the section is open in the x-axis direction.
In case a, the resistance increment has a maximum when the current is directed along the y
axis: (-A—S/p)max ~ (th/H)ele/Rd. (The increment is connected in this case with the change
of the Hall field in the region between the domains.)

In cases b and ¢ we have Ap/p ~ (41{M/H)21 2/Rd for any current direction perpendicular
to —ﬁ

Inasmuch as the stratification into domains is periodic in 1/H, the resistance incre-
ment will have the form of jumps periodic in 1/H, with a period equal to that of the usual
Shubnikov oscillations (Fig. 2). .Let us compare

the amplitude of these oscillations with the

dp —H_afﬂ f amplitude of the Shubnikov oscillations. For the
: I Shubnikov oscillation amplitude we have [5] (under
: r the condition kT g ZOﬁwH) posc/p ~ (theF)l/e
. ' ~ (a/R)l/ 2, where Wy is the Larmor frequency and
L——LJ ¢ a the interatomic distance. Recognizing that
bam/H ~ (vF/c)e(eF/hmH)l/2 (c is the speed of
Fig. 2 light), we get
A_—; ~ (i; M . (3)
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There is at present no theory that yields the dependence of the domain dimensions on the
sample thickness (Fig. 1). If we use the analogy with ferromagnets, then d ~ /L A7eo, where

A is the surface tension on the boundaries between domains, and €. is the additional energy

0]
density near the sample boundary.
2
Let us consider the simplest case: OB/OH ~ 1, My ~ AB. In this case A ~ RM, [81.

Putting € ~ Mg, we get d ~ /RL. It then follows from (3) that
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Putting VF/c ~ 10'2, a~ 10'8 cm, and L ~ 107! ¢m we find that when 2 > 1072 ¢m the oscilla-

tions in question exceed the Shubnikov oscillations in amplitude.

Similar oscillations should occur if the periodic structure predicted by Azbel' [9] is
observed.

An experimental observation of the oscillations described above would serve as a direct
confirmation of the existence of domains or inhomogeneous structure, and would make it possible
to determine their size.

The author is grateful to I. M. Lifshitz and M. Ya. Azbel' for useful remarks and I. M.
Privorotskii for a discussion of the results and for the possibility of reading [8] prior to
publication.
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As 1s well known, the problem of the scattering of a conduction electron by an impurity
possessing a spin cannot be solved by perturbation theory. Solutions were obtained in [1,2]
by the dispersion approach (both results agree near the Fermi surface), but they are not
analytic with respect to the coupling constant.

We present here a solution of the problem for one particular case when the impurity
spin is equal to unity; this solution is analytic in the coupling constant. When the coupling
constant is positive, it agrees with the solution obtained in [2]. The method of obtaining
the solution that follows, and also a generalization to the case of arbitrary impurity spin,
will be published in a detailed article.

In [2] there were introduced the amplitudes o, which in the case w > O are the scat-
tering amplitudes in states with total angular momengum J =5 % 1/2; the a, are analytic func-
tions of the energy. Unitarity conditions for these amplitudes were deriv;d in [2]. We
shall use in lieu of o  the S-matrix elements S = 1 + 2ika , to which the following unitarity
conditions apply: B ) )

231



