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The electric conductivity of a metal in a magnetic field is, as is well known, a super-
position of a continuous component and and oscillating one. The oscillations of the conduc-
tivity in a magnetic field are called the Shubnikov - de Haas effect and were considered theo-
retically in [1]. The quantum oscillations obtained there for the conductivity in a magnetic
field HO ; the observation of which calls for satisfaction of the conditions “HO << € and
:r2T < uHy, are proportional to the quantity OAM / OHo (z Il H ) and the amplitude of the oscil-
lations is of the order of Ac(qu) ~ Ac(Cl) ( Ho/e )1/2, where pu = el/2m*c is the effective

Bohr magneton and €., is the Fermi energy. No account was taken there of the difference be-

tween the magnetic ?Lnduction inside the metal and the magnetic field, although in fact all
the kinetic and thermodynamic characteristics of a metal depend on the induction B [2]. For
example, the classical part of the resistance of a metal in which the number of holes is equal
to the number of electrons is pmB ~ Ba (o, B = %,¥; 2 )l Ho) [3]. On the other hand, the in-
duction, under appropriate boundary conditions, is an oscillating function of the external
magnetic field. This leads to an additional oscillating term in the conductivity, connected
directly with the influence of the de Haas - van Alphen effect on the resistance. Indeed,

if the external magnetic field is parallel to the surface, then by virtue of the boundary con-
ditions we have H,y = H and the induction in the sample is B = H + LaM(B) = H, + baM(B). 1In
this case the oscillating addition to the conductivity is proportional to AMZ: and its ampli-

tude is of the order of
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The oscillatory term indicated by us will dominate in the corresponding part of the conductiv-
ity if

H.A. v €%
gl ) AN ~ (— )2 >1.

c ul,

(2)

This inequality is well satisfied in relatively weak fields, which in turn call for low tem-
peratures (T ~ 0.1°K). For example, for a metal in which the number of holes is equal to the
number of electrons, the additional oscillating term of the resistance is Ap(g -A) ~ EBAMZ.

If the external field is perpendicular to the sample surface, then by virtue of the boundary
conditions, the induction inside the metal is equal to the external magnetic field B = HO
and the resistance oscillations coincide with those obtained in [1]. Thus, the considered
effect of direct influence of the oscillations of the megnetic moment on the resistance depend
on the direction of the field relative to the surface. The maximum amplitude of the indicated
resistance oscillations is then attained in a parallel field.

If X = 4n(3M/IB) ~ (v/c)2( eo/uHo)3/2 > 1, then, as is well known, the homogeneously-
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magnetized state becomes thermodynamically unstable [4]. At a Qertain Héi)(T) gi =1, ...,
N(T)), two phases with different values of the induction, Bl(Hél), T) and B2(Hé1 ; T), and
with equal values of free energy, can coexist. Such a situation repeats in steps of AHC(HO’ T)
which depend little on Hb. A first-order phase transition takes place (provided, of course,
the surface energy of the interphase boundary is positive). With this, a domain structure can
arise, determined entirely by the boundary conditions [4]. In the region (v/c)eeo/pr >1
[region (1)] the oscillating part of the conductivity is proportional to oM, and in the
region (v/c)eo/pHO <1, X > 1 [region (2)] it is proportional to BAMZ/BHO. If the external
field is parallel to the surface of an infinite cylinder, no domain structure is produced.
Therefore.the conductivity is a periodic function of the field Hb, with discontinuities at the
points Hél)(T) in both region (1) and region (2) (k1.

If the external field is perpendicular to the sur- Tﬁb z
face of an infinite plane-parallel plate, then do-

mains are produced with walls parallel to the z

axis and perpendicular to the y axis (see Fig. 1)
with concentration C(B,) = (B, - Hy)(B, - B,) T& e, Ti’ e
(the concentration is obtained from the boundary

condition B = Hy). Let £ << d and & << d, where

(4
! is the mean free path, ® the width of the domain
wall, and d the domain dimension. It is then Fig. 1
meaningful to refer, in the case of the components oxx and Uyy, to a quantity Eik defined by
i = C(By) o1 (B)) + (1 =C(B)) o, (B,), (3)

since we have in this approximation simply a parallel connection of "conductors™ with oik(Bl)
and Uik(BQ)’ For the same reason, it is convenient to introduce also the quantity Byy’ de~
fine? by (3), since in this case we have a series connection of the "conductors." This leads
—(el) (cl)
to Oy = Oy (Hb) and
A;;u = C(Bl) Aa“(Bl) + (1 _C(Bl)) Ao, (82),

(

i.e., the derivative with respect to the maghetic field is discontinuous at the points Hbi)(T)
(#]. 8imilar formulas hold for the remaining components.

We also call attention to the fact that in the case of stratification into domains,
the applied external electric field is redistributed inside the metal and becomes inhomo-

geneous. In our approximation we can easily find the indicated field distribution, namely,

Ey(Bl) for I.’imB1
E () =
EY(BZ) for BmB‘2 ,

where (by virtue of the continuity equation jy = const) we have for E(Bl) and E(Be) the fol~

lowing system of equations:

oyy (B By (B =ayy (By) By (3y); CE (B} +(1-C)E (B =E =L=1Ag,
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where L is the dimension of the sample and A¢ is the potential difference at its ends. We
note in conclusion that effects similar to those considered above take place also for the
remaining kinetic coefficients of a metal in a magnetic field.

The author is deeply grateful to M. Ya. Azbel' for valuable discussions.
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In general relativity theory, rejection of the simple assumption of a flat Euclidian
space raises naturally the question that the topology of space (three-dimensional as well as
four-dimensional space-time) can differ from the simple topology of flat space for an open
world or the topology of a sphere for a closed world.

Shortly following Einstein's first paper [1] on the cosmological problem, in which he
constructed a static cosmological model with a closed spherical three-dimensional space,
Klein [2] indicated that a three-dimensional space with the same metric can also be elliptic,*
i.e., it can have on the whole other properties than a spherical space.

The question of the connectivity of the space as a whole and of its topology is con-
tinuously mentioned in the literature (see [3]).

The nonstationary nature of the universe and the probable existence of a singularity
in the past obviously limits the region accessible to observation and hinders a direct ob-
servational investigation of the topology, say by observing the same remote object in opposite
directions. Interest attaches therefore to those limitations that can be imposed on the
topology by starting from considerations that do not depend on astronomic observations.

One such limitation is the requirement that causality be satisfied. This requirement
is incompatible with manifolds containing closed timelike world lines (see [4,5]).

The purpose of the present note is to emphasize that recent discoveries in the physics
of elementary particles, which make possible absolute definitions of "right" and "left," show
that a real physical three-dimensional space cannot be non-orientable (this cannot be refuted
a priori). It is known that non-orientable three-dimensional spaces are contained, for ex-
ample, among the 18 possible spaces of constant zero curvature (among both the open and the
closed ones)™™ [6].

Suveges [6) emphasizes that in a non-orientable space inversion is a continuous trans-
formation (and not discrete, as in an orientable space).
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