ance is violated in the decays K% + e*ur 10 ana ®° » e 9r1. On the other hand, in the decays
k" + eTur'n” and K~ » e 9n nT CP violation should lead to differences not only in the differen-
tial probasbilities, but also in the partial widths of the decays (owing to "leakage" in the
kKt » e*vor® ana K+ e~ v’ channels). These effects will not be small if the AT = 1/2 rule
is violated in Keh decay.

The author is grateful to I. Yu. Kobzarev for useful critical discussions and to V. I.
Zakharov who called his attention to the role of the AT = 1/2 rule in Keh decays.
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¥We assume that the rule AQ = AS is wvalid.

2 , .
#*%In this integration, expressions of the type (p1r + p )° are taken outside the integral
sign, and the integration in the remaining expression reducel essentially to the substitution
pu *PK- p\).
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Calculations of the elastic fields produced by dislocations in crystals serve as the
basis for many applications of dislocation theory. However, allowance for the elastic
anisotropy of the crystal can be made only in the case of straight-line dislocations, when
the problem reduces to a planar one and admits the use of complex-variable methods (see [1]).
The field of curvilinear dislocations is usually estimated very roughly in the elastic-isotro-
pic approximation.

For a dislocation loop T with a Burgers vector b in an unbounded anisotropic medium,
the displacement uk(x) coincides, in accord with the reciprocity theorem, with the work done
by the stresses oiJ produced by a unit force applied at the point x in the direction k on the

discontinuities of the displacements b,, needed to form the dislocation [2,3]
® 3
B k .1
w (x) = fbioij(x - x)dsj. (1)

The integration is carried out here over the surface S(x') bounded by the loop I'. Represent-

ing the plastic distortion u? connected with the dislocation in the form

ik
uf b, §(x~x’) dS, = [b_ ok ds (2)
ik-f k (x-x) i m mn,n i
we obtain for the elastic distortion Ui in accord with the Stokes theorem¥*,
P ! -k
U (X) = Uy g —Uyy =~ €i00f bydx; =-FF, (3)
r

i.e., the elastic distortion Usy at the point x is equal to the i-th component of the gener-
alized force F"k exerted on the dislocation by the stress field produced by a single concent-
rated force applied at the point x in the direction -k. (We note that this rule holds for

arbitrary sources of internal stresses.) Integration by parts transforms (2) into
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i (%) ‘If €qif (%g =4 ) 1; ofs, 1 485 (1)

where the vector Ty = dx'/ds is directed along the tangent to the curve I'(s). Formulas (2)

and (4) reduce the difficulty of finding the elastic dislocation field to the well known dif-
ficulties in constructing the Green's tensor for an isotropic medium [S5]. We shall show that
the sought-for field can be directly expressed in terms of the field of the elastic distortions
of linear dislocations. According to (4) we have for a dislocation passing through the origin

in the direction of the vector T
2k
u, (%, r) = €2 %a T bm f O, i (x ~r8) ds. (5)
- 00

Substituting s = 1/s' in (5) and recognizing that

e sign ¢
Oem' i (ax) = Gem'l (x),
a
we get
L [ 2 . k . [ dl
U (x5 1) =€, X, g b (s signs Oem, | (r ~x8) ds, (6)

Applying the operator D% = xsxy(azlarsaty) to both sides of (6) and noting that

d , , d ,
T8 Yem, i {=%8) = =— Oep, i (T=%5)>
arB ds

we get after integrating by parts
1
a3t %a ) ofa,1 7 07y (0 1) (1)

We replace in (7) x by t and T by x = x'. Then D = ria/axi and formula (4) takes on the

sought-for form

1 a?
U, L (X) = - — b — Tm Ty g (1r x-x') ds. (8)
2 T ox  drx,
According to (8), the contribution made to the distortion by the linear dislocation segment
between the points Xq and X, = X + T8y is
1 d % d
Ui (x) = — 1y f — uy (r) X=X, ~18) ds =
2 axm ° ds
(9)
1 a
= — (X =%yq) :5—- [u;, (X, ~x,, X =X,) =ty (X, ~X, x-x,)]
} 4

To move one or two ends of the segment to infinity requires consideration of a transition to

the limit in the form

. 9 L]
lim ry — "ik(" X—~rs) -gim Srp—— U (87, X=rs) =
8 i00 ax, S +to00 axn
] x

--tim X u x
—_— . f - — .
S+t " gx ik (% S ) =tuy (1, 1),
n
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We have allowed here for the fact that uy has an inhomogeneity index -1 as a function of the

k
first argument and & zero inhomogeneity index as a function of the second argument. As a

result, for a dislocation ray going off in the direction of t to infinity, we have

1 ]
Ui (X) = — [y (7)) =7 —— u (ry X)) (10)
2 ox

n
A superposition of fields of the type (8) or (9) makes it possible to construct the elastic

field of any polygonal dislocation.

For a planar curvilinear loop, expression (8) can be simplified by considering the field
in the plane of the loop only. In this case the operator rna/axn is replaced by the operator
Tr-lsin(¢ - 0) 3/38, where r = |x - x'|, ¢ is the azimuth of the vector T, and 8 is the azimuth

of the vector x - x'. We get in lieu of (7) (after integrating by parts)

g ( ’ > i (11)
k(=== vyt — vy) —,
2 302 ik r
where
Vi (6 = v 8in (¢ ~0) uy (ry x=X") (12)

is the orientational part (independent of the distance) of the distortion.

Using (8) - (11), we can write out expressions for the stress field and for the dislo-
cation interaction and self-action forces,which determine the interaction energy and the self-
energy of the dislocations. In particular, the use of (11) to calculate the self-action force
of a flat loop yields directly Brown's result [6]. From formula (10) follows directly the law
of ray interaction in dislocation nodes, making it possible to generalize the results of [7] to
the case of arbitrary anisotropy (the law of interaction of the branches of a corner disloca-
tion [8] turns out here to be a simple particular case). The moments of interaction of the
dislocation rays can be investigated with the aid of polar diagrams that characterize the
orientation dependence of the force (or energy) of interaction of parallel dislocations with
equal Burgers vectors: the moments of interaction of the rays on these diagrams correspond
to the distances between the curve and the tangents to it. The points of encounter of the
tangents with the curve determine the position of the equilibrium rays. Equilibrium corner
dislocations correspond to points with a common tangent. This result agrees with the criterion
for the formation of corner points on the profiles of bodies with anisotropic surface energy
[9] and explains why the results of investigations of corner points on dislocations [10],
in which a seemingly invalid approximation of the linear energy was used, agree with experiment.

The foregoing examples give grounds for hoping that the developed theory will find many
applications.
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% The result (2) is contained in implicit form in [4], which is devoted to the dynamics
of dislocations.
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In a nonlinear plane wave in which all the quantities depend on x and t only via the
phase 6 = kx - wt (we shall call such a wave stationary), the frequency w is determined not
only by the wave number k, but also by other parameters which are assumed small in the linear
theory. We consider here a case when only the amplitude is such a parameter, i.e., we assume

that the nonlinear dispersion equation is of the form
w = w(kz, a2) (1)

(the medium is assumed for simplicity to be isotropic and the wave is assumed linearly polar-
ized). The properties of the stationary waves, and particularly relation (1), are usually
obtained in relatively simple fashion from the general equations describing the given wave
field.

We consider in this note the evolution of the local perturbations of nonlinear station-
ary waves. It is assumed here that the spatial scale of the perturbation is large compared
with the wavelength, so that the wave can be regarded as quasistationary., Thus, the amplitude
a(x,t) of the wave is a slowly varying function, and the phase takes the form 6 = k X - w.t +

0 0

¢(x,t), where k) and w, are the "unperturbed" wave number and frequency, which satisfy Eq. (1)

with a = a. (a. is the unperturbed amplitude), and ¢x/ko and ¢t/m0 are small quantities. If

070
the amplitude a 1is also regarded as a small quantity, then the system of equations for a

and ¢, accurate to terms of order a2 and (¢x/ko)2 inclusive, takes the form

1 2 2 1
Srrg ey o) neen
) (2)
2 E -]
(a%) +(a ¢,5)§ 9,
where
X —-u_t tu! ! ( do )
= -— r = , M . —— ——
3 o ) “ o 662 am0, k =k, ?
(3
dw (ky,0) , P ae(k,,0 )
0o T T————— ‘z 2
ak') ako
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