in the niobium-nitrogen-carbon system. The specific peculiarities of the phase with B-W lat-
tice, whose composition in the niobium-germanium system is shifted under ordinary conditions

towards niobium and corresponds approximately to Nb, ,Ge, make such an assumption plausible.

In the compound NbiGe itself, quenching also increazéz the temperature at which the resistance
begins to decrease, but, Jjust as in the alloy investigated here, its resistivity, which begins
to drop at 17°K, does not vanish even at 6°K [3]. However, we cannot exclude at present other
causes of the increase in Tc’ for example the influence of uncontrollable impurities entering
into the alloy during the prolonged annealing. These impurities can be oxygen and nitrogen,
and also silicon from the ampoule walls [4]. The authors of [2] report that the electronic
specific heat of the alloy investigated by them, i.e., the coefficient y of the linear term,
is at least half as large as y of the NbBSn and V5Si. They therefore conclude that their
results do not agree with the modern microscopic theory of superconductivity, which calls for
an increase in Tc with increasing electron state density N(0). However, they did not report
in [2] the phase composition of the samples, so that the low values of y may be average values
taken over the entire sample, and the value of y of the phase responsible for the high Tc may
be larger than the average. 1In addition, when the state density is large, the simple expres-
sion relating y with N{(O) is no longer valid. It is probable that further investigations are
needed to confirm the statement made in [2]. Raising the critical superconductivity tempera-
ture by two degrees is of undoubted interest, not only from the purely scientific point of

view.
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If the gravitational field is the field of the space-time curvature tensor, then the
Ricei tensor R; in a real field is commected with the matter tensor in a nonlocal manner [1]
and (in contradiction to Einstein's equations) does not venish outside the field sources.
Consequently, there should exist in nature anomalous gravitational waves that carry the tensor

R, If the anomalous gravitons have a rest mass u # O, then the equations of weak anomalous

w§ves in vacuum should be of the form 0Of - pgf = 0, where f is the component of the curvature
tensor and O the d'Alambert operator in flat 4-space. Let us see to what extent yu # 0 is com-
patible with the metric equations of gravitation.

We assume that the egquations of gravitation correspond to the principle of least action.

Consequently [2]
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Diw = Tix (1)

where Tik is the material tensor and D,, a symmetric dynamic tensor:

ik
— 5 —_
9D, a2 (V=G A : 2)
VoI Pim 2 g A ) (

g is the determinant of the covariant components of the metric, and A is the lLagrangian of
the free gravitational field containing only metric quantities. It is easy to show (by the
method of [3]) that regardless of the concrete form of A the covarlant divergence D
vanishes identically in accord with (2); therefore the equations Tk . = 0 (which lead to
the principle of a geodetic for a point) are automatically the consequence of (l). The geo-
detic equations follow from Tk;i = O only when the gravitational interaction is included in
the material lLagrangian in accordance with the equivalence principle (in the sense of {2]),
as is indeed assumed; in this case Ti has the usual structure.

For p # O it is necessary that the dynamic tensor of the weak field be linear relative
to Of - pgf; this is accomplished by an appropriate choice of the lagrangian. A general form
of A, admitting of a limiting transition to the Poisson eguation, has been established in [2]

A= (R+X), (3)

2x
1

where Ry > 0 is the coupling constant, R the scalar curvature, and X an invariant that de-
creases in a vanishing field like the n-th power (n > 1) of the curvature tensor (or of its
covariant derivatives). For u # O it is necessary to have n = 2 and it is sufficient to as-

sume that in a weak field

1
= — 2 _ k
X : (82 + 283 )R2 -£3R[ Rk , (%)
R . . R ikRem ik s
where ll o are constants with the dimension of length; the invariant Rem ik (Rem - Riemann
3
tensor) is not included in (4) because in a weak field it differs from a linear combination

of R2 and RiR? only by the divergence, which drops out identically (according to (2)) from

the dynamic tensor. We choose the coordinates such that the metric of the flat 4-space coin-

ik (00 O ap

cides with 7y =-1, 7y =0, 7y " = Saﬁ; a, p =1, 2, 3; xO = ct). Egquations (1) - (&)

lead to the linearized equations of the weak field:
Bi 2m 5l 1 2y qf il im
. -E30R, - 3-(t’l -£2)3"9,R =k (T] -3'8‘( "), (5)
where
= 1
R[ =R - ?Rak':3k=3/3xkv 3 =ylka,

contraction of (5) yields
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20R -R=xTI . (6)

-1 _
1,2,” H1,2?

; - —R61 respectively; consequently l

anomalous waves would have a superlumlnal group velocity.

According to (6) and (5) ¢
ponding to the fields R and R

where By and hy are the masses of the gravitons corres-

1,2 > 0, for otherwise the

For an empirical determlnatlon of My and “2’ let us consider the static field of a

2

nonrelativistic source T = -pc , T =0 (i, k £ 0), p is the mass density. According to the

k
geodetic principle [4] oo = -1 - 2¢™2p, where ® is the gravitational potential. From (6)

and (5) (for i = k = 0) it follows that

£ p(x%) 1 4 i
&(x) =~ ac ) P (1 + — exp(=pyr, )= —exp(-pyrey’ 1d&, (7) (7)
w Fxx’ 3 3
vhere r; = |x - X'|. Asymptotically, o - (—nlcu/Bn)mr_l (r » »; r is the distance from the

mass center). There are no empirical data at present pointing to the viclation of Newton's

law Gm. m.r -1 at large distances, and consequently, in accordance with the definition of the

1z
gravitational mass, we should put ki€ = 8nG, where G is Newton's constant. As a result of
such a definition of Ky we have @ = qb + &8¢, where Py is the Newton potential, and the in-
crement
p(x ) 3, (8) 8
54,.:-_—[————-————(exp(—ulr“')—4exp(—u2r,x’))dx (8)
rXX’

is the result of the nonlocal coupling between R and T;, which is realized in the solutions

k

(5) by nonlocal propagators (8) with finite radii !, 5. We note now that inside a non-
2

relativistic source we should have dp << 9 in order to avoid a discrepancy with Poisson's
equation. Consequently both constants ll and 12 should be small compared with the dimensions
of all the nonrelativistic bodies (the factor 4 in (8) excludes the compensation of the ex-

ponentials via oy = pe) and we unconditionally have [ << a, where a is the radius of the

1,2

earth (6 x lO3 km). But in such a case we have in the external space &p ~ Gmr exp( rll 2),

a'l), where r,  is the radius of Mercury's orbit,

M M

- L
8 is a nonlocal correction to the rotation of its perihelion, rMa 1 =~ 10 , and the result

strongly contradicts the empirical formula {5] & ~ 10%, owing to the exponential decrease of

and according to [1] we have & << exp(-r

&p. It can be shown in general form that the degree of contradiction remains in force also
when the mass spectrum is intorduced, i.e., for any quadratic structure of X. Consequently,
such (logically possible) structures are empirically completely excluded from consideration
(provided only & > exp(—loh)), and we see that p # O is incompatible with the metric theory.
If, for example, X depends only on the scalar curvature, then in a weak field [2]
3K - R = 0, where { = dX/dR. The equation has physical solutions only if QR"l < = when
R =0 [2]. With exception of the case (CR_l)O £ 0 (i.e., u # 0), the asymptotic value of §
satisfies the equation 0§ = O, corresponding to u = O for {-gravitons. The example shows

that according to the metric theory real gravitational waves propagate with the speed of
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light and the gravitons have zero mass.
The detailed theory will be published in JETP
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There is a rigorous theory describing reactions in which several nonresonantly-
interacting particles are produced near threshold (the total kinetic energy in the final
state is considerably less than the masses of the strongly-interacting particles) [1-3].

The production amplitude is represented in the form of some series in the squares of the
momenta of the produced particles. The non-analytic term of this series (the terms having
singularities near the physical region of the reaction), are uniquely connected with the
scattering lengths of the produced particles, while the analytic ones are expanded in a
Taylor series with unknown coefficients. An experimental separation of the nonanalytic
terms makes it possible to determine the scattering lengths of the produced particles.

In the case of the K ~ 3x decay, the expansion of the amplitudes was verified with
accuracy up to terms of order E5/2 (E - kinetic energy released in the decay). The corres-
ponding expressions for the probabilities of the decays K% > n+n+n-, Kf > nonon+, and
Kg > :r+n_:ro, with allowance for the AT = 1/2 rule, are given in [4].

The experimental data are usually presented in the form of spectra in terms of

=1 - (Kig/E) and Z = 2(K§3 - K§3)/\/§ E divided by the phase volume; K,, are the relative
momenta of the pions {the indices 1 and 2 pertain to identical pions or to the n+ and 7
mesons in the K > n+n ﬂo decay), and the pion mass is equal to unity. Experimental spectra
with respect to € and Z of the K - n+n+ﬂ decay and spectra with respect to € of the
K > X non+ and K > ﬂ+n no decays are presently available. It follows from the correspond-
ing formulas for the decay probabilities [4] that in the case of the K - n+n+n decay the
spectra with respect to € and Z cannot give any information on ao and ays when laol, ]ael

< 1, the terms containing a. and a, make no appreciable contribution to the distributions

O 2
with respect to € and Z, and these distributions are described with sufficient accuracy by

the expressions
WH=(¢) = L+aE(c—-—), Wtt=(Z) =

where o 1s an unknown constant connected with the analytic terms.

It is meaningless to take into account the small deviations from these formulas

334





