lies in the range
5
- <Zy<. (9)
9

The well-known difficulty with the "nullification of the charge" [3] is thus eliminated.

b, Expression (3) for the field mass does not admit of expansion in powers of «., Al-
though the counterterm method employed by us is based on a diagram technique, it represents
a definite departure outside the framework of consistent perturbation theory. The reason
is that in the construction of Eq. (2), which defines the mass of «, we first consider m
as an independent parameter and we do not assume it to be expandable in a series in the in-
teraction constant. In particular, the representation of the counterterm u in the form of
a sumy = p, + p, + ..., vhose terms are defined by relation (1), is not a consistent expan-
sion in powers of «, since the dependence of a also enters via m. Substitution of the solu-
tion (3) in (1) shows that all the w, are of the same order of magnitude.

5. In the "logarithmic" approximation employed above, we discard an infinite series
of "nonprincipal” terms. If we retain in expressions (1) for Ky not only the principal
terms but also the succeeding powers of 1n(A/m), then the numerical coefficient B in (3) will

be replaced by the series B + aB, + a2B2 4+ ..., and consequently (3) is replaced by

B
= AeX (_—- B - B T see ) =
m P = 1-2%2 (10)

B .
= Aexp(=Bpexp(- ——){1-aB, + ...1.
a

Since the perturbation-theory series in guantum electrodynamics are presumably asymptotic
series, it is natural to expect the series in the curly brackets in (10) to be ssymptotic
and, taking the smallness of the parameter a into account, it is accurate enough to retain
the first term only. In this case replacement of the result (3) by expression (10) does not
change qualitatively the foregoing conclusions.

The author is deeply grateful to A. I. Akhiezer, N. N. Bogolyubov, A. A. Komar, M. A.
Markov, and V. I. Ogievetskii for interest and discussions, as well as to the participants
of the seminar of the Institute of Theoretical physics of the Ukrainian Academy of Sciences
at which this paper was reported.
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COMPENSATION OF A BALLOON INSTABILITY MODE OF A PLASMA IN A TOROIDAL SYSTEM
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The magnetic force lines in toroidal systems for plasma containment are convex on the

outside and concave on the inside. Therefore, at a finite plasma pressure, the translational
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instability that develops without distortion of the magnetic force lines may also be accom-
panied by a balloon instability, which is manifest in a bulging of the force tubes on the
outer side of the torus.

At a finite plasma pressure, however, there exists also in toroidal systems another,
useful balloon effect. It consists in a shift of the entire plasme pinch towards the outer
wall of the torus. Since the internal magnetic surfaces are shifted more strongly than the
external ones, a situation arises wherein the toroidal system has an averaged "magnetic well"
- the average magnetic field on the outer surfaces is larger than on the inner ones. We
shall show below, using as an example a two-turn stellarator with circular magnetic axis
and a system with a helical magnetic axis, that the deepening of the magnetic well due to
the plasma pressure cancels out the balloon instability if ideal plasma conductivity is as-
sumed.

An expression for the second derivative of the volume with respect to the longitudinal
magnetic flux V"(®), which characterizes the depth of the magnetic well, is given in [1].

It is a linear function of the parameters a %oy and o, of the magnetic surfaces. The

2 %ps
values of these parameters in the absence o% a ilasma were determined in {1]. The correc-
tions for the plasma pressure can be determined by a perturbation method, as was done in
Sec. 11 of [1], where the shift of the magnetic axis was determined for a specified external
magnetic surface. In contrast to this calculation, we now must assume not a fixed external
surface, but a fixed magnetic axis (since the formulas for V' have been written out in a
coordinate system in which the magnetic axis coincides with a coordinate). For this purpose

it is necessary to set the constants Cl and C. in the expression for the pressure-related

2
transverse magnetic field equal to zero.
A straight forward but somewhat laborious calculation leads to the following expres-

sion for V" in a two-turn stellarator

‘ ¢y Klnp’(8-6e2 —€4)
VAL V_____:glle_czg L. L ‘ : +
1730\/1-52 2 308'264\/’-62 (1)
plv'
= V" n
+ B2 0o * Vo

Here BO is the magnetic field on the axis, K the curvature of the axis, € a parameter con-
nected with the ratio of the semiaxes ll and 12 of the elliptic cross sections of the mag-
netic surfaces, € = (li - l;)/(ti + tg), B' = kN, and N is the total number of turns exe-
cuted by the elliptic cross section in going around the torus. The pressure in the vicinity
of the axis is taken in the form of an expansion p = Py + p'®, so that p' < 0. We see that
V; < 0, corresponding to a deepening of the magnetic well as a result of the plasma pressure.
To compare the effect of the deepening of the well with the effect of the balloon in-
stability, we shall use a general criterion obtained by Solov'ev [2] for the stability of

a plasma against local perturbations in the vicinity of the magnetic axis
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, " 1 V" .2 a, 2 2
— (X2 —1{p" - - pz _Lpdig 70p)? s0. (2)
485 v |v | v B} |vo|?

Here js is the longitudinal current density and p the distance from the axis; the primes de-
note differentiation with respect to ® and the angle brackets averaging over the volume of
the layer contained between two neighboring magnetic surfaces. The first term, which con-
tains the second derivative of the flux X, characterizes the stabilizing role of 'shear."
The second and third terms correspond to translational instability, and the fourth to the
balloon instability modes. We note that the last term in the expression (1) for V", which
does not depend on the curvature, describes a trivial deepening of the magnetic well owing
to the diamagnetism of the plasma contained by the magnetic field. This terms is compen-
sated by the second term in the curly brackets of formula (2) and thus drops out of the
stability criterionm.

The expression for js in the vicinity of the magnetic axis is given in [1] (formula

11.46). 7The use of this expression yields, after suitable averaging,

(pai 2 2,72
< pdis/ dp) 5 2k%p

veiz T Bgpaer AVImetred (3)
€

If we now combine this term in criterion (2) with the term containing V;, then the stability

criterion takes the form

1 " v kZ -2
Xy, T e Y, kTP Fe) 130, ()
483 vV’ |V@|2 V' B2 52
where
gl d S 2
Fle) =228 T gl —e-22-4e2U4——u...). (5)
1 - €2 2

We see that f(¢) > 0, i.e., the effect of deepening of the magnetic well is even larger than
the effect of the balloon instability.
In the case of a system with helical magnetic axis, having a curvature k and a torsion

k, the last term in the curly brackets of criterion (4) is replaced by

k2p°2 2- 2 ‘/1-5 k2p*2 5
P { ¢ -—(1- )= e2(1- —¢e+...)>0, (6)
BZxX1+e) 1-€2 ¢ 1+e B2 ? 4

Consequently, a sufficient stability criterion for both systems is the presence of a magnetic
well in the vacuum magnetic field. No limitation is imposed here at all on the plasma pres-
sure. Moreover, if we have in the vacuum field a "magnetic hill" in lieu of a magnetic well

(VS > 0), then the plasma can become stable even in this case if the pressure is high enough.
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Let us denote by A& the relative height of the magnetic hill, A = VS@/V', and by ¢« the angle
of the rotational transformation (v = N€2/2 and ¢+ = kL, where L is the length of the magnetic
axis of the system, for the two systems, respectively). Then the ratio B = 2p'®/B§ of the
plasma pressure to the magnetic-field pressure at which self-stabilization of the plasma

takes place in the absence of shear is given by the condition

2A 24
g> Lt = (-4-)2. (7)
K2L2e2  ¢2 2gq

The foregoing examples show that the balloon-instability criteria obtained by solving
model problems [3,4] do not give a correct idea of the role of this instability in real
toroidal systems. It was already shown earlier [5-7] that in the Tokamak system there are
automatically produced conditions under which the balloon instability becomes stabilized.

It follows from the foregoing results that self-stabilization of a plasma as the result of
the toroidal effect is realized also in systems of the stellarator type.
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In an earlier paper [1] we considered weak interaction between hadrons and neutral
lepton currents that arise effectively in the theory with charged currents in second order
in the weak interaction constant G. It was shown on the basis of current algebra that the
momenta of the virtual hadrons are not cut off by strong interactions, so that the effective

. . s 2.2
interaction constant of the hadrons with the neutral lepton current is sz ~ G A, where

A is the cutoff due to weak or electromagnetic interactions. !

This result was based, besides the assumption on the commutation relations between
the' current components, on additional hypotheses concerning the asymptotic behavior of
certain amplitudes at large momenta (for example, an amplitude proportional to the diver-
gence of the axial current). In the present note, assuming that the asymptotic behavior of
the amplitude

MEB(o", kip,a) = i fdxe™ <a|TLiZ (x), iBlo)1lb> (1)
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