not emit even optical lines.

4, However, we still did not take into account here the absorption, in the same zone,
by meutral and ionized atoms and molecules (in particular, of the same kind as the emitter).
In general the effect can take place in any medium with €" # 0. It is therefore more con-
venient to express y' more phenomenologically - in terms of the range of the photon absorption
£ in the medium, exp(-£ Im k) ~ 1, i.e., £ = (2[k|&)™ > ~ (|x|e")™ . Equation (&) yields

. *) v 4
-)'—‘257 N Ao ? (8)

Yo

where £ is in centimeters. With such an approach N is no longer the number of electrons, but
a parameter which determines, in accord with (2), the minimum distance, starting with which
the collective quasistationary interaction is realized between the emitter and the absorbing
varticles (resonant atoms which lose in their excited state energy to friction and to impacts
of the second kind, and also electrons producing the ohmic losses).

The conditions for the realization of the effect are worse in radiocastronomic conditions,
where N is relatively small. However, it may be encountered for rotational frequencies, and
especially for vibrational frequencies, as well as for transitions between highly-excited
levels.

It must be emphasized once more that owing to the strong dependence on the not-too-well~
defined quantity R0 » the presented numerical estimate is quite rough. However, the effect it-
self is real. Thus, assuming, for the sake of reliability, a value of RO larger than (2) by
2 - 3 times, we obtain, to be sure, a smaller value of y', but the correctness of the calcula-
tion becomes obvious. As noted by V. L. Ginzburg during the discussions, in the case of very
small Ro an important role may be assumed by spatial dispersion, which possibly automatically
cuts off the integral, and the introduction of the parameter RO is unnecessary.

Indeed, if the Debye radius D turns out to be larger than R0
that one should choose as the lower limit in (1) not R, but D. In terms of our variables,
D/R ~ 0, h‘l‘*l/aﬁ* 1/6. In such an approach, if D/Ro > 1, we get in lieu of (7) 7'/70
~ 90-In¥ N*7/ 2/‘1‘*3 Of course, & more detailed analysis is required here.

I am grateful to G. A, Askar'yan, V. L. Ginzburg, D. A. Kirzhnits, and I. I. Sobel'man
for useful discussions.

, then it can be assumed
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The purpose of the present note is to call attention to several very general peculiari-
ties of the spectral functions of crystals with linear and two-dimensional defects (edge dis-
locations, stacking faults, flat boundaries, and others). If the defect has the form of a
straight line or a plane (assuming that the defect concentration is low and they can be re-
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garded as isolated), it causes violation of the translational symmetry of the crystal only in
directions that are perpendicular to this line or plane. Therefore the component f” of the
wave vector parellel to the axis or to the plane of the defect is an integral of the motion,
g y) With
frequencies w(f", p), vwhere x, , and x,, are respectively the components of the radius vector

A 11
of the Z-th particle in the direction parallel and perpendicular to the defect line or plane;

and the normal vibrations of the crystal take the form of waves cpf“,p(x‘ l)exp( if

P is the index numbering the normel vibrations for each f'” and assumes 3L.L values ("number

of the branch"; f” has Ll values); Ll and L, are the numbers of particles on the axis or on

the plane of the defect a'.nd along the’ perperlxdicular cross section {plane or line), respective-
1y, so that L = LllLi is the total number of particles in the system.

As shown by an analysis of simple models of extended defects (see [1,2]), among the in-
dicated wave solutions there are as a rule some whose amplitude decreases exponentially with
increasing distance from the defect: Peyp ™ exp(-xl l)/p (p = p(f", p) is the depth of
penetration). However, it is possible to verify the existence of such solutions without re-
sorting to simplified models. Far from the defect, the dynamic matrix corresponds to an ideal
crystal whose normal vibrations are plane waves with frequencies wo(f, g) (o is the number
of the branch). For each fixed f“ (f = £,

limit gso(f”) and (I)o(f”), respectively (we consider for simplicity a one-atom matrix without

+ T L) these frequencies have an upper and lower

optical branches; the generalization to the case of an arbitrary matrix whose spectrum can
have gaps can be effected directly), so that

@o (g ) < wo (gt fys o) < Golfy ). (1)

Let us constrain mentally all the atoms of the crystal, with the exception of those situated
in the region of a defect, and let us excite in such a "bound" defect a natural oscillation
with a certain f” and with frequency md(f”, p). For each f” there can be 315'l such waves
{p=1, 2, ..., 3rl), where r is the number of atoms in the perpendicular section of the
defect (by a plane or by a line in the case of one- and two-dimensional defects, respective-

ly). If it turns out that for a certain p we have
@, (fy,p) <wolfy) OF wylly,p)> dolfy ), (@)

then, by virtue of (1), the indicated excitation ceannot propegate through the crystals when
the constraints are removed, and remains localized in & small region near the defect. This
oscillation will occur at a somewhat altered frequency w(f”, p), determined by solving ex-

actly the dynamic problem, which satisfies as before one of the inequalities (2) (wd(f", D)
- w(f", P).

Thus, out of the 3L.L "branches”" of the oscillations, a finite number (~3r .L) of the
"branches" may turn out to be localized, and the Van Hove theorem [4] ean be used to analyze
their contribution to the spectral functions gik(u)2, xg‘}')) and g(we), which describe the
dynamics of the individual atoms in the defect region and of the entire crystal as a whole,
respectively (see [3]; Xy, = xgi) correspond to the defect atoms). Using the results of this
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theorem, which apply to one- and two-dimensional systems, we find directly that in the pre-

sence of local oscillations we have

g'k (wz,xﬁ”) =g;’zk(w2-3‘£f,)+95k(“’2'-x&d,)7 (3)
2 _(a4)

where g':;k(w s Xp) ) has the following singularities in the vicinity of the critical points
@1 of each of the local branches (p =1, 2, ..., ~3rl):

g5k (w2 xf?) ) = CP| 02 =2 |7/ A 11 sgn(o? - 02p)1 [ =01 (%)
in the case of linear defects and

cIC”‘sgn( 0?- wiz), =1le=-1,1=02 4

(5)

ik 2 (d)
g vx, =
ot sf ) ~CkinlwZ-wl;|, T=1 b

in the case of two-dimensionel defects (Cik are certain constants). The function
glik(wa, xgi)) has singularities which are weaker by one order in (w2 - ng), or else singu-
larities of the ordinary three-dimensional type [4] (generally speaking, at other points).
The critical point wpI = w(f"cr, P) corresponds to the value f'" = fllcr at which the gradient
an‘”g(f"cr’ D) vgnishes for the p-local branch, and its index I is defined here as in [5].
The function g(w ) is represented in the same mammer, except that its singular part (4) or
(5) (Cik is replaced by a scalar constant C) is proportional to the concentration of the
defects.

The minimum number of critical points wpI of index I for each local branch is deter-
mined by the Morse theorem [4,5], with the exception of the singular points of index O of
the acoustic local branches (i.e., those for which a)(f“, D) = cf, y3 their number

does not exceed three), if such exist. The depth of penetration p(f”, p) of the acoustic

| for small f

local oscillations in the case of small f' is proportional to ful (compare with Rayleigh

waves), so that these oscillations become Is‘t;:rongly "ecollectivized" as f" -+ 0, Therefore a
singularity of the type (4) or (5a) in the vicinity of the minimum o’ = m2(0, P) =0 (I=0)
does not appear and the spectral functions under comnsideration turn out to be proportional
to \/a?, as is inherent in three-dimensional systems. We note in this connection that the
presence of linear or planar defects in a crystal of larger dimensions, while the harmonie
character of the interatomic forces remains valid in the entire crystal, cannot lead to a
deviation of the lattice specific heat from the T3 law when T << hmcr. min’ where mcr.min
is the critical point of type (4) or (5) which is closest to zero. The cases indicated,
for example, in [5] are essentially caused by other factors (crystal of limited dimensions
with secured boundaries, or thin plates). However, deviations can arise when T ~ mcr. min
lies sufficiently low.

We note also that singularities of the type (4) and (5) are analogs of the 5-function

singularities in the spectrum corresponding to the local oscillations of zero-dimensional
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effects (say impurity atoms). However, unlike the latter (compare with quasilocal oscilla-
tions [6]), the singularities (4) and (5) become clearly manifest even if the case when the
fall in the region of the continuous spectrum of the matrix (0, abmax); wpI is only limited
in that it must not belong to the region (1) (when £, = f ), which in general is much
narrower than the band (0, ubmax)’

Singularieties of type (4) or (5) should obviously be possessed by the functions of

the state density of elementary excitations of arbitrary type, if localized states near

er

extended defects are possible for these excitations.
The author is indebted to E. I. Rashba for a discussion of the work.
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1. C(Considerable progress was made recently towards the production of ultrasound
pulses of ccherent light by amplification in the nonlinear regime [1], and especially by
linear absorption [2]. The laser of De Maria et al. [2] represents essentially a two-
component laser medium, in which (unlike the two-component medium of [1]) the nonlinearly-
absorbing component (satursble solution) effects compression of the pulse, and the amplifying
component (neodymium glass) compensates for the unavoidable losses and allows generation to
develop from the level of spontaneous noise., The purpose of the present letter is to examine
the dynamics of the compression of the light pulses at maximum pulse-compression rate. Our
results also describe the dynamics of light-pulse compression in a laser with self-phasing
of modes by nonlinear absorption [2].

2. We shall consider the propagation of a light pulse in a two-component medium made
of two-level absorbing and amplifying particles. The parameters of the medium and of the
pulse satisfy the following conditions (the indices 1 and 2 pertain to the amplifying and
absorbing particles, respectively):

T >» rp>> T, 7D, T, (1)
1 2
EM>>eD E, {2)
where TP and E are the duration and energy (in photons/cm?) of the pulse, Egi) - hub/aoi
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