The total deformation of the samples to which Fig. 2 pertains was about 44 at the end
of the experiments.

The spectral behavior of the effect can be seen from the plots of Fig. 3. The effect
was observed in the wavelength region coinciding with the band of intrinsic absorption of
light by Cas.

The effect is maximal when the illumination wavelength is close to the intrinsic-
absorption maximum (5300 .7&) . The spectral dependence of the effect was plotted at 75°C at
a constant illumination of 150 lux.

The sole purpose of the present note is to report the experimental facts. We assume
that the observed phenomenon is due to the change of the conditions for the motion of dis-
locations during the time of illumination. This can pertain either to the change in the
density of the free electrons interacting with the moving dislocations [1] or with the change
in the form of the potential relief along which the dislocation moves (Peierls barriers)
during the course of photoionization of the atoms constituting the crystal lattice of the
CdS. The presence of a maximum of the effect in the region of the intrinsic absorption gives
grounds for assuming that the nature of the observed phenomenon differs from the change in
the state of the local centers capable of pinning the moving dislocation, as is observed in
colored ionic crystals illuminated with light in the F-band [2].

Further experiments will be aimed at a detalled study of the nature of the observed
phenomenon.

The authors are grateful to A. L. Ivanov for help with the experiments.
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As is well known, at velocities higher than critical (vc = vcl), i.e., at velocities
corresponding to complete dragging of the He II by the vessel wall (in the case of translia-
tional or rotational motion of the vessel), the fountain effect and the second sound remain
in force, while the velocity of the second sound remains the same as in the precritical
mode [1]. This is evidence that when v > vcl the He II does not go over into the normal
rhase, and moreover, the ratio of the density Pn of the normal component to that of the
superfluid one (p s) does not change noticeably. However, such a behavior of He II does not
contradict Landau's known point of view that when v > Ve the number of excitations produced
is unlimited, owing to the interaction of the He IT with the vessel walls (i.e., all the
He II goes over to the normel phase), since the usual identification of the Onsager-Feynman
vortex filaments, which determine vcl’ with microscopic excitations is not fully correct. It
is known that: (i) the vortex filaments represent macroscopic motions of the superfluid com-
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ponent and the length of the vortex filaments and rings has macroscopic dimensions, (1i) the
velocity perturbation due to the filament (vg(r) = #(m|r - r,(t)|)) extends over large dis-
tances, (iii) as a result, the minimum of the "free”" energy E = E -~ Mo corresponds in
rotary motion to ean average filament density n = n, = 2w/k = mw/nf (i.e., to an average dis-
tance between filaments b = b, = (nhﬁnm)l/e, where E is the kinetic energy of the super-
fluid component, M its angular momentum, x = 2x%/m the circulation for one filament, and w
the angular velocity of the vessel). Consequently, the vortex filaments are effectively re-
pelled from one another, so that the distance between them cannot exceed b and an unlimited
nunber of filaments is produced. It is known that when n = mw/{xfi) the angular momentum is
equal to its solid-body value [1,2}, i.e., the superfluid component, without going over into
the normal phase, imitates the rotation of the liquid as a whole, corresponding to the normal
phase, and in the case of translational motion it imitates the flow of the liquid as a wholel
(with solid-body total momentum at an average distance between vortex rings b = [2nfiR/(3mv) ]?).
In only one respect is there a similarity between the vortex filaments and the excitations.
According to Ginzburg-Pitaevskii [3], we have p, = O on the vortex axis (pg(r) ~r as r - 0),
and only when r >> a do we have pg = pso(T) (a - effective radius of the core of the vortex,
Pso is the value of Ps in the absence of vortices). Inasmuch as g + Py = const, it is
natural to propose that the core of the vortex will be filled with the normel component, i.e.,
when a vortex system is produced with a density

»
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n o= b;z -( o
Pp increases by an amount Ap = psnae/bi (and p, decreases by Ap) (the change of n 1is con-
nected with the fact that the solid-body angular momentum is now equal to the sum of the
momentum of the superfluid component and of the normal component dragged in the vortex core
by the vessel, i.e., rotating with angular velocity ). Thus the vortices also make & cer-
tain contribution to Pp? and in the presence of vortices there is produced in He II a mixed
phase analogous to the mixed phase for superconductors of the second kind. Its formation,
however, is connected not with the negative surface tension Cop? 25 in the latter case, but
with repulsion between the vortex filaments. The upper critical velocity Voo (wcz) at which
the He IT goes over entirely into the normal phase can be determined either (i) by the fact
that the distance between the filaments becomes of the order of a - Vég (in this case Pg = 03
the upper critical field in superconductors of the second kind is determined in this manner)
{4}, or (ii1) by the microscopic excitations vgz after landau. vé2 = w%QR ~ Rh/maz; when
T << 1 we have a = a01—2/3; T=1T - IVIX [5]. vga = A(t)/p0 (& and P, are the energy
and momentum corresponding to the roton minimum in the energy spectrum of He II). Of course,
Voo is equal to the smaller of the quantities vée or v',. Usually vge < vél; only when

c2

T<< 1l and r 1is small can vél < vgg occur. Tt would be of interest to set up experiments

aimed at observing the fountaining and second sound at v > Vap*
2. In the calculation of Vol (wcl) one usually neglects the energy of the normal com~

ponent in the vortex cores. We shall show later that near Tx this can lead to appreciable
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errors. Let us consider w'. corresponding to the presence of a system of vortices with den-

cl
sity n = 0, (a)' = W3 calculation with n = no leads to the same results). The free energy

E, per unit volume is equal to E, = n [(e + o o ) - 028 +2aw)];

1
%2 b 7py aZR2 whpo, R2
PRRLLL LS P 2¢00,, +na(F -F );a=~ - i B= ———}
m? a 4 4m

the term a,w2 is equal to the kinetic energy of the normal component in the cores of vortices
rotating with angular velocity w, the first term in € 1s connected with the ordinary
kinetic energy of the vortices, the second with the surface tension between the normal and
superfluid components on the surfaces of the vortex cores, and the third with the additional
energy lost when the superfluid component is replaced by the normal ones in the vortex cores
( Fn - Fs is the difference between the specific free energies of the normal and superfluid
components at the given temperature). The expression for M takes into account the rotation
of the normal component in the cores of the vortices. Putting E= 0, we obtain a quadratic
equation for a)cl; wcl corresponds to the positive root of the equation

= [(ae + 62)1/2 - B1/a.

When o << 82 we have o , = e/(28). The second and ‘c.hir;i terms in ¢ are small both when
2/3

T=0 and T = T H when T =T they a.re close to T If we neglect these terms, we

obtain the usual equaltion w l):' Eﬁ(mR ) in b/a. On the other hand, if ae >> 62, i.e.,
R << Ry, vwhere R, = 2a(1n b/a)1/2 (R =2a 1‘2/3(111 b/a)Y/2 pear T ), then VT w,4R
= M+ 293( 1n b/a) 1/ e/ma.o This is precise],v the dependence on =T observed in the experiments
for pores with dimensions R = 0.2 u at TK - T =107 -2 "'h' deg. {(In the comparison with
the experimental data it is necessary to consider vc and not a)c, since in [6] they rotated
the entire cylinder, which was covered with porous material and had an outside radius 2.5 em.)
It is easy to see that the condition R << RO is satisfied if ay = (0.7 - 2) x lO'Z/gm.
For pores with R = 10 , the dependence of w,, on T 1is weaker, but approaches ~1 at
T)\ - T~ lO'h deg, and W,y = const for pores with R = 150 p. Indeed, in this case R >>vRO.
We note that when the condition R << RO is satisfied we get Wy~ R"l, and not Wy~ R-2 as
in the case when R >> RO.

Were we to have w_ ., > w'e, then a transition from the superfluid phase directly into

cl
the normal phase would occur at w = w! 00? bypassing the mixed phase. In this case mée ~ 'ru/ 3,

and not Oy 72/ 3, if a = &yt -2/ 3, as proposed above. (If the coefficient of p in the ex-
pansion of the thermodynamic potential in [3] were to tend to a constant velue as v - 0, as
in [3], and if Py = 1'2/3 ao'r'l/3, le., @, ~ 11/3 vwhen R << R and w(':e ~ 1'2/3.)
Tt would be of interest in this connection to set up experiments analogous to [6], but at
stil)l lower values of R or T; & much stronger dependence of vc on T was observed in [7]
for pores with R = 3 x 10-7 em, but at T ~ 1/2 - 1/4. The numerical coefficient in the ex-
pression for a)‘ is not known exactly, but apparently in the experiments of [6], < wée
i.e., the mixed phase was realized.

, then a =

even at R = 0. 2 1, when wcl ~ c2"
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As is well known, a single additive lepton quantum number that assumes only three
values (=1, 0, +1) is insufficient for a description of the aggregate of experimental data
on weak interaction processes in which leptons take part. We can consider different possi-
bilities, among which we menmtion the following:

1. There are two different additive lepton charges - muonic and electronic. From the
point of view of the experiment proposed in the present note, this alternative does not differ
from the case when there is only one additive lepton charge, whose signs are opposite for e
and e [1].

2. There is one additive lepton charge, the values of which for e, Ve and p , vu are
different (say +1 for e, v, and +2 for u, vu) [ei.

3. There is only one additive lepton charge £ (say +1 for Ver Vo e, u and :1 for
Ge’ ;u’ e, p+) and one Tultiplicative [3] lepton number M equal to +1 for v, e, Ve et
and -1 for vu, Wy vu, B

Alternative 3 is the least rigorous of the foregoing possibilities, since it permits,
in principle, muonium % antimuonium transitions [4]. It calls for a value +1 for M in all
particles that are not leptons (see, for example, the decay £+ -+ u+ + Vp etc.) and it there-
fore seems to us quite artificial. In addition, it is not compatible with notions of Feynman
and Gell-Mann [5] concerning the interaction of two currents. However, only experiment can
answer the question whether alternative 3 is realized in nature.

To clarify the question of the existence of a multiplicative lepton number, it was
proposed to study experimentally the oscillations of the muonium 5 antimuonium transition [3].
In this case, however, the required experiments are quite difficult. Besides, such oscilla-
tions are caused by a second-order interaction or by a rather exotic interaction. We propose
below a concrete-experiment formulation free of these shortcomings.

Let us consider the decay of a muon, say a positive one (for reasons of experimental
nature, which will be made clear in whet follows). According to possibilities 1 and 2, its
scheme is p+ -~ e+ + Ve + 5“. On the other hand, if there exists a multiplicative quantum
number M besides the additive charge (alternative 3), then the muon decay proceeds [3] in
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