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Substituting here (7), we get
o Nal2} ; 2,2
10 z°e (9)
+ k(2] B0) = —— W)E‘
We note that the small term omitted from (8),
29k corresponding to the electronic compressibility, has
EL' ﬁ\ (1ike P(O>) a dependence on QO lying between 1/98/3
-ci, \ and 1/523/3, as follows directly from the usual ex-
] ¥4
pression for the energy of the electron gas [8]. We
o+ can therefore write with good approximation
+
1
98 + B(0)~m—
N %)
;} ;} ;J é¢ Hence, returning to the general expression for P(3)
£/4(0) and taking (7) into account, we get
Q
— wf 2 , (10)
B(M) Q,(0)

which is an approximate wniversal relation for alkali metals., A similar relation was ob-
talned empirically by sanalyzing the measurements for the entire group of alkali metals [1].
We emphasize that such a simple analysis would not be valid in the general case for an
arbitrary metal, owing to the appreciable role of P2, and also of the many-particle terms
in (3).

The figure shows a theoretical curve for the complete equation of state {(with allowance
for P(2) and P(O) at T = 0), in terms of the variables P/B(0) and no/szo(o). The figure
shows also the experimental points obtained for Ha [2] and K [3]. We see tnat the agreement

between theory and experiment is good in a wide range of applied pressures,
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Pinkus [1] has recently pointed out the possibility, in prineiple, of the existence in
superconductors of single-particle bound states due to the penetration of the magnetic field.
The physical cause of the appearance of discrete levels is the quantization of the finite

motion of the quasiparticles in the potential well produced by the magnetic field near the
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surface of the metal. We determine in the present communication the spectrum of the single-
particle excitations in a superconductor in the quasiclassical approximation, and present
a simple physical interpretation of the guantum states.

We start from Gor'kov's equations for the wave functions of the quasiparticles [2].
The superconductor occupies a helf-space x > 0. The vector potential is A = (O, -f: H(x')ax',
0). We assume on the superconductor boundary the condition of specular reflection, which

teakes in the quasiclassical approximation the form

€lecg = Mheag = 0. ()
(We note that the form of the boundary conditions in the absence of diffuse scattering has

no bearing on the determination of the spectrum). Almost specular reflection is due to

small angles ¢ of collision between the almost-glancing electrons of interest to us and the
surface, ¢ § ¢0 = (6/1‘)1/2 << 1 (r - cyclotron resonance, § - depth of penetration of magnetic
field), Inasmuch as the number of such electrons is small (v ¢O), the energy gap A is de-
termined, as before, by the self-consistent interactions inside the volume of the metal.

The gap is constant in the approximation linear in H.

We seek the wave functions in the form
A . .
U(r) =( B) exp (i Fyy +ipyz) exp(iS(x)), (2)

where in the guasiclassical approach S(x) is a rapidly varying function of the coordinate.
The condition for the wvalidity of the quasiclassical approach has in the typical case the
form H > (a/éK)Hc, where a is of the order of the interatomic distance, H, is the critical
field, and « is the Ginzburg-Landau parameter. The generalized momentum of the system

p = 95/3x has in the main approximation in the quasiclassical parameters is given by
Pzi/2m= u—ﬂi’[(f+ E—A P )2 —A2]1/2: (3)

where €, = (pi + pi)/Qm, and the remaining notation is that of [2]. A plot of the functions
pi(x) at the most interesting values of the parameters is shown in Fig. 1 (only u - g, =
o > 0 are considered, since pé(-a) = —pi(a). It is important that, as can be seen from (3),
the velocity v, = 9¢/9p, vanishes at the point of "termination" of the real branches (i.e.,
on the boundar; of the ;lassically accessible region). The p, (x) dependence corresponds to
the classical trajectory v, (x) = i+(x) shown in the same figu;e. -Obviously, discrete
quaentum levels correspond Eo perio&ic trajectories near the metal surface (see Fig. 1).
Leaving the detailed analysis of the possible situation to a more comprehensive
article, we confine ourselves here to the characteristic case corresponding to Fig. 1. In
this case the only turning point Xx,, common to the electron end "hole" (we call electron and
hole, arbitrarily, the branches distinguished by the indices "+" and "-"), is the point of
reflection for the particles., An electron traveling from the surface arrives at the point X,
with momentum p_, is reflected at this point, and is transformed into a "hole" with momentum
p_ (it is "forbidden" to go off with a different momentum by the presence of a momentum jump

between the pairs of branches at x = xo). Accordingly "hole" (-p_ ) arriving at the point g
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f:::::j Fig. 1. Phase trajectories of excitations
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goes over upon reflection into an electron with momentum (-p ).
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Let us prove this result. As usual, we represent the wave

function in the form of oscillating exponentials when x < X and in

the form of damped ones when x > Xqe The amplitudes B at x > X, are
connected with the amplitudes A at x < Xq by a transition matrix

A b 0

B8 = (0 b*’), (k)

where the elements of the 2 x 2 matrix b are of the order of unity. The fact that the
amplitudes A and B corresponding to different pairs of branches do not become interconnected

is the conseguence of the presence of a momentum jump at the point x This can be shown

formally by reducing the system of Gor'kov's equations near the turn?ng point to an equation
with linear coefficients, and then integrating this equation by the Laplace method (cf.,
e.g., [3]), making it possible simultanecusly to find the exact solution for the excitations
moving at the very surface in a practically homogenecus field. The fact that the 2 x 2
matrices b are complex conjugate can be readily established from symmetry considerations.
From the condition that the amplitudes corresponding to solutions that grow inside the
metal must vanish, we obtain by using the boundary conditions (1), accurate apart from the
phase v, the condition for the quasiclassical quantization of the single-particle excita-

tions in the superconductor
S = fro (o, = p_)dx = (n+y) e, (5)

Assume for concreteness that the field attenuates exponentially on penetrating the metal,
H= Hoexp(-x/é). Then the area 5 shown shaded in Fig. la can be expressed in terms of
elliptic integrals. Without presenting here the concrete calculations, we give by way of an

example one particular case of formula (5), which can be used for estimates, When

(k—¢ )/A>> [ (e A+ Q8| P,| )/A1/2
(6)
[T 1Y

nﬁ)AlEﬂ

1/3

3 2/3

where Q = eHO/mc.

At reasocnable values of the parameters, several levels may fit within the depth §;
with further change of Py’ these levels give way to a continuocus spectrum. They are shown
schematically in Fig. 2,

A similar analysis can be made also for all the remaining cases. Its result, however,
is.clear already from Fig. 1. In all cases, the gquantization corresponds to a classical
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periodic motion, the distance between the levels Ae being determined by its period T, vis.,
Ae = n/T. For example, it is clear that in the case of Fig. lc the levels split into a
band whose width is determined by the probability of tunneling of the quasiparticles from
one region of classically-allowed motion to ancther, and decreases exponentially with in-
creasing distance between these regions. It follows also from (3) that even a weak magnetic
field decreases the energy gep in the spectrum of the guasiparticles near the surface, and
moreover can cause it to vanish. In fact, at H = O the spectrum becomes continuous, and all
energies compatible with the classical motion are allowed. It is seen from (3) that when
H = 0 this leads to |e| > A, whereas even € = 0 is admissable when H # 0, and IPyl = A/QS.
Since Py £ PO, we must have Q6 P > A for the gap to vanish. For typical metals a shift of
order A takes place in fields H 3 10 Oe. OfF course, the corresponding field must be smaller
than the critical field. TIn the London case the corresponding field is of the order of the
thermodynamic critical field, and in the Pippard case it may be appreciably smaller. It
must be borne in mind, however, that the number of states of such quasiparticles is small
and tends to zZero as H - O,

In conclusion, let us consider normal excitations for which e >> A. The trajectory
is periodic when Py < 0 and IPy] > p_. In the opposite case, the electron leaves the skin
layer. The period of motion and accordingly the distance between the energy levels of the

normal electron is determined in the former case by the formula

md p2 _p2 ’
T=- Pz—pZ)'-1/2 (7 + 2 arc sin 2 Py o+ '&I m( & .. -
¥y 4 mna&
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