processes (2), inasmuch as in the former case the corresponding photonless processes is one

of the main decay channels.
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INSTABILITY OF OSCILLATIONS WITH FREQUENCY EQUAL TO HALF THE ION-CYCLOTRON FREQUENCY

A. V. Timofeev
Submitted 18 August 1969
ZhETF Pis, Red. 10, No. 8, 389 - 392 (20 October 1969)

1. It is known that in adigbatic traps the plasma can be unstable against the buildup
of ion-cyclotron oscillations, i.e., oscillations with frequencies close to the ion-cyclotron
frequency w; or to its harmonics nw, . However, buildup of oscillations with frequencies that
were multiples of half the cyclotron frequency, w = nwi/2, was observed in experiments with
the Phoenix apparatus [1] and with Ogra~l (unpublished) in addition to the ion~cyclotron in-
stability., In our opinion, the excitation of such oscillations may be connected with
parametric resonance. Let us explain this statement. The ion-cyclotron instability begins
tobuild upat a plasms density such that the frequency of the magnetized electronic Langmuir
oscillations becomes comparable with the ion-cyclotron freguency [2, 3]. In a homogeneous
and unbounded plasma, the spectrum of the frequencies of the magnetized electron Langmuir

oscilletions is given by the formula w = w /k g mpe, where wpe is the electron Langmuir

Ky
frequency and kH is the component of the wzie vector along the magnetic field. In bounded
systems, the spectrum is discrete and in order for the oscillation to build up it is
necessary that the maximum frequency in this spectrum be comparable with ws . (This frequency
is smaller than wpe, since oscillations with k; # 0 are built up). The oscillations with
lower frequencies remain stable within the framework of the linear theory. In the presence
of instability at the ion-cyclotron frequency, however, the plasme parameters become alter-
nating in time, and this creates conditions for parametric buildup of oscillations with
w = wi/2. At much higher values of the density, wpe > nw; and parametric buildup of oscilla-
tions with w = Rwi/Z becomes possible (L = 1, 2, +v., 2n).

2, let us assume that oscillations of the electric potential are excited in an
adiabatic trap at the ion-cyclotron frequency. The systems of interest to us {Phoenix,
Ogra-l) have axial symmetry (the symmetry axis is parallel to the magnetic field and to the
0Z axis). Therefore, the perturbations of the potential will be of the form ¢l(r, t) =
¢1(r,Z)COS(wit - nle), where 8 is the azimuthal angle. In the analysis of the evolution of
the oscillations with w = wi/2, we shall use asymptotic methods developed in the theory of the
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nonlinear oscillator [4]. In many cases these methods were used also in plasma oscillation
theory. [5, 6]. Following [4 - 6] we shall seek perturbations of the potential in the form
¢2(?, t) = ¢2(r, z, t)cos (wit/2 + y(t) - m26). We shall assume henceforth that the charac-
teristic time scale of the amplitude ¢, (r, z, t}, and also of the slowly-varying part of the
phase ¥(t) is large compared with the cyclotron period.

The time dependence of ¢2(r, z, t) and y(t) should be determined with the aid of the
equation of motion of the electrons, the continuity equation, and the Poisson equation.
Simple manipulations yield

g=8w - Acos2¢, (1) p=-pAsin2¢, (2

p=0<(3¢,/92)2>1V2, 80 =0w,-w,/2,

w, is the frequency of the oscillations under consideration in the linear approximation,

i.e., at ¢l = 0,

1 nyr.z) [ 9¢,\? Idy\2 .y
. > < > ,
A= 8 ®;* noir,z) oz ) (32 )
¢
e . 1
mlrz) = 5 e S,

n, is the unperturbed plasma density, and the angle brackets denote integration with respect
to r and z.

It is interesting to note that precisely the same equations are obtained for p(t) and
y(t) from the Mathieu equation
4A

)

¥+ 02 (l- cos w,;t)x =0, (3)

if the solution (3) is sought in the form [U4]

x =plt)cos ( Ly o yr)) .
2

This analogy enables us to transfer the results of the investigation of (3) to our case. In
particular, if the frequency of the natural oscillations wy turns out to be close to wi/2,

then the oscillations under consideration will be stable. This buildup condition is given

by
n, 6:[;2)2
< ( > ®
1 a i
Az o o 7F > 18wl = lo, - — 1, ()
4 3,1}
<(_ )>
dz

For the buildup to occur, it is also necessary that the azimuthal wave number m also be

divided together with the frequency, i.e., that the rele.tion‘m2
To verify whether condition (4) is satisfied in real systems, it is necessary to solve

= ml/2 be obtained.

exactly the problem of the natural plasma oscillations in the linear approximation, with a

determination of the form of the functions nl(r, z) and ¢2(r, z), and also the natural
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frequency Wy To this end it is necessary, in turn, to know the unperturbed plasme density
distribution no(r, z). However, there are no corresponding experimental data. Therefore,
strictly speaking, our statement that the buildup of the oscillations with w = mi/2 has
a parametric character is only a hypothesis. It is favored by measurements of the azimuthal
dependence of the perturbations [1]. From the results of these measurements it can be con-
cluded that the oscillations with w = mi/2 have half the amplitude wave number of the
oscillations with w = w; s 88 follows from the theory. No corresponding measurements were
made on Ogra-l, In these experiments, excitation of oscillations with w = nmi/2 (T2n>2)
at a density much higher than critical. It is natural to attribute their buildup to the
excitation of high resonances, see [L].

In conclusion we note that parametric buildup of oscillations can be regarded as a
particular case of decay instability. As is well known, the condition for the decay of an

oscillation with frequency w into two oscillations with frequencies w. and Woy s is of the form

1

w = Wy + Wy s In the parametric resonance, we have w = w/2, On the other hand, it is

= W,
shown in [6] that in a certain sense the decay insta%iliti itself is equivalent to parasmetric
resonance. In particular, by a suitable choice of variables, the equations describing the
decay instability can be reduced to the form (1) and (2). Thus, whereas in a homogeneous and
unbounded plasms the magnetized Lengmuir oscillations with freguency w and wave vector ﬁ,

namely ¢(r, t) = ¢ cos(Ker - wt), break up into two other oscillations

& 2(r,1) = 2 (t)cos (k) 1 - @y ,t - ¥yt ),
then in our case it is necessary to put in equations (1) and (2)

P =(¢l¢2)1/2; Y = lz (f(t) + U,(t) + Swt), 8o =0,+w,-0,

@ ; ky ¢ k,
A=-— — (w,0,) 1?2 (—K-'—+ + "2) .
n 4 ky ' ©, @,
k2 ky ® /2
] 2 1
D - M 402y o ——
nE-gined g /8- oo ( . ) .
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