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Much interest has been recently evinced in theoretical and experimental studies of Fermi-
Bose quantum liquids. In practice these constitute either a superfluid solution of He3 in Heh
at T << Te = m*v§/2, when the interaction between the Fermi excitations becomes appreciable,
or pure He® in the temperature region where pairing can give rise to superfluidity.

In [1 - 4] they developed a theory of Fermi-Bose liguids and analyzed the acoustic so-
lutions (first, second, and zero sounds) for the unbounded case. However, if the Fermi-Bose
liguid fills sufficiently narrow channels, then the so-called fourth sound, i.e., a wave con-
taining no oscillations of the normal component, can propagate in it, just as in pure He II [5]

3. Heh solution {6, T]. The channel dimensions must

and in a nondegenerate superfluid He
satisfy in this case one of the following conditions: either the depth of penetration of the
viscous wave or the mean free path of the elementary excitations must be appreciably larger
than the transverse dimensions of the channels.

According to [2], the complete system of equations describing the acoustic oscillations
of a Fermi-Bose liguid consists of the kinetic equation for the Fermi excitations, the conti-
nuity equation, and the equation of superfluid motion. The continuity equation for Fermi ex~-
citations and the equation of motion in a system moving with velocity ;s can be obtained from
the kinetic equation by suitable integration. However, since it is assumed in the calculation
of the fourth-sound velocity that the walls stop the motion of the normal component of the
liguid in the entire volume [5, 6], we cannot use the momentum-conservation law., To calculate
the fourth-sound velocity we should therefore derive from the kinetic equation only the con-
tinuity equation for the impurities, and introduce the following additional condition (which
leaves the system of equations closed):
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The notation here and below is the same as in [2]: 3' is the momentum of relative motion of the
normal and superfluid components, m* the effective mass of the Fermi excitation, N the density
of the Fermi particles, and Fl the first coefficient of the Legendre—polynomial expansion
of the function F(x) that describes the interaction of the excitations at |p| = |p'| = Pps
this interaction depends only on the angle x between the vectors 3 and ;'.

Expressing f' in terms of the distribution function of the Fermi excitation, we arrive

at a condition imposed on the variables contained in the equation:
vy = vg/vp(l + F/3), (1)

where v, is the first spherical harmonic of the function v(cos @), which is proportiocnal to the
deviation of the distribution function from the equilibrium value on the Fermi boundary (6 is
the angle between the excitation momentum ; and the wave vector i).

Using the condition (l), we obtain ultimately the following system of linearized equa-
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tions describing the propagation of fourth sound in a Fermi-Bose quantum liquid:

v =0

*
1 Nm
. - . =0
up Vsp(l 1+F1/3 o ) ) (2)

vpvg - sp’ =0,

where p' is the deviation of the total density of the liquid from the equilibrium value in the
sound wave, u = w/k, and 82 = p(32E/8p2); E is the energy per unit volume of the liquid.
Vanishing 6f the zeroth spherical harmonic of the distribution function (first equationm)
corresponds to absence of oscillations of the normal component of the liquid. The condition
for the compatibility of this system of equations yields a dispersion equation from which the

fourth-sound velocity can be determined

1 Nm

ui =sz(l— ). (3)
3

Formula (3) is expressed in terms of variables that are natural for the case of pure He~.

1+ F/3 P

This case is of physical interest in the sense that experimental observation of fourth sound
in pure He3 would be evidence of the onset of superfluidity (sound cannot propagate at all
in pure He3 filling narrow channels unless there is superfluidity).

For the case of a degenerate solution of He3 in He at low concentrations, we get

Nm' 5m ]’ )
024 =v{ 1 —_ “1“+F,/3)+ (L)
p(1+F £3) m )

here uy is the velocity of first sound in the solution.
Separating the concentration dependence, we can obtain an expression relating the fourth-

sound velocity in the solution with the fourth-sound velocity in pure Heh:

Nm®

v =u2,|14(8+ ) (5)

m pl

oy and B are parameters connected with the dependence of the Fermi-excitation energy on the

density p, of the Bose component [2], and

&m m
v = 1 - (1+F/3)

m
Measurements of the first and fourth sound velocities in degenerate solutions make it

possible to determine the effective masses of the impurity excitations and the parameters that

characterize the interaction of the Fermi particles with either the Bose or the Fermi part of
the liquid.
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Recently Lee and Wick proposed a field-theory formulation that includes states with an
indefinite metric (see [1]). The purpose of introducing en indefinite metric in [1] was, as
usual, to the field-theory divergences. The authors of {1] propose and prove this possibility
in a simple model, and also that no additional difficulties connected with violation of uni-
tarity and causality arise in such a theory if it assumed that unusual states {with negative
norm) are unstable with width I' ~ 10 - 50 meV.

The unusual states (which we shall henceforth call LW particles) must appear as complex
g attering-matrix poles lying on a physical sheet. We shall show that the existence of such
poles at high energies should lead, in principle, to violation of causality on macroscopic
scales.

Let the process

!

2 (1)
3

correspond to production of an LW particle and to its subsequent decay into two particles (1
and 2). For concreteness, we shall trace the behavior of particle 1.

In the rest system of the resonance, the coordinate of particle 1 is given by
Ry = volt - 14), (2)

where tO is the instant of registration, T is the lifetime of the unstable particle, and Yo
is the velocity of the particle 1. Unlike the normal Breit-Wigner resonance, in this case
we have Ty < 0, leading to the appearance of non-causal effects. In the Lee and Wick model,
however, ‘TOI ~ F_l 10_13 cm, so that no macroscopic causality violation takes place.

Let us consider now the decay of a rapidly moving resonance resulting from a collision
at high energy. The coordinate of particle 1 can be obtained in this case with the aid of a

Lorentz transformation of formulas (2). It then turns out that
R=ur + vt - 1), (3)

vhere R and t are the position of the first particle and the instant of its registration in
the lab (t = O corresponds to the instant of collision in reaction (1) and R = 0 is the col-
lision point), u and v are the velocities of the resonance and of particle 1, and t= r//f:j;z
is the lifetime of the resonance (LW particle) in the lab. A more rigorous proof of (3) is

given in [2], which contains a space-time description of the reaction (1) with the aid of
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