s | e -MT), Ap = A

n ~p
g2~ Po
© (T/A)3, Ay = Acos 8, B, lIA -

When the field EO is increased, "breakdown'" occurs, wherein the electrons jump through
the gap as a result of the energy acquired from EO'
We note in conclusion that an experimental investigation of the effects under consider-

ation is feasible at the present time. It calls for fields E = 3 x th - 105 V/em with A ~
3% 1073 - 1072 ev.

The authors are grateful to V. M. Galitskii for useful discussions.
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GRAVITATIONAL RESONANT DETECTOR WITH TWO DEGREES OF FREEDOM

G. Ya. Lavrent'ev
Submitted 10 October 1969
ZhETF Pis. Red. 10, No. 10, 495 - 499 (20 November 1969)

The sensitivity of resonant detectors for gravitational waves can be increased, as noted
in {1], by increasing the initial displacement, this being accomplished by introducing a rigid
(at the given frequency) rod in a bresk of the resonant coupling. In addition, one can use
as a mechanical amplifier of resonant oscillations (as will be shown below) a system with two
degrees of freedom. Such a detector is illustrated schematically in the figure.

Let us estimate first the permissible rod

m, m 1 length in the field of a gravitational wave de-

fined by a parameter h and a frequency w, i.,e.,

the length at which the condition A% << [ is
still satisfied (here A% = FL/ES is the quasi-

static displacement of the ends of the rod, and

¢ = h&/2 is the reduction of the spatial distance £ in the field of the wave). Rewriting the

condition in the form f = nAL (n >> 1) and substituting in A% the expression for the force

F = wemlh/h {2], we obtain for % after simple transformations
2 v
e - /L = (1)
n @

Wwhere vy is the velocity of propagation of the transverse oscillations in the rod.
Let us consider now a resonant system with two degrees of freedom (corresponding to one
half of the detector, since the center of mass of the system is at rest in the field of the

wave). The damping in the system is détermined by the friction forces acting on the masses:

[m¥, + (kg + ky)x; = kyx, + Hyx, = F,
<. . (2)
(m %, + kyx, - kyx, + Hx, =F, .
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We write down the system of equations in symmetrical form, introducing the notation
07 TRy PRy Uy, =k, @y = -k
and 512 = 0:

2° pr Byy =My, By = my, gy =Ny, and ey, = Hy, with 8, =0

" [ lat
BiiXp tapxp+ax, + e x =fe

B [ . _ f lwt (3)
22X * ®1pX) T ayX, 4 €%, = FLe

We set the partial frequencies of the first and second resonators equal to each other:

2 _ - .
07 = oy /By = s/ By

We then obtain for the natural frequencies of the system, assuming Hl and H2 to be small
quantities [3]:

2

“1,2 7 n¥(1+y), where ¥ = aj,/ajay;.

Let one of the natural freguencies coincide with the frequency of the driving force. We

assume that the resonator Q factors are limited only by the observation time, @ = wi/2. Then

mw m, o
Q=-n_=-—2—, i,e. H =Hym/m) . (%)
H, H, !
Since the displacement of the body in the field of the gravitational wave does not de-
pend on its mass, we obtain a similar relation for the forces fl = fzml/mz. We seek a solution
of the system (3) in the form x = x Twt

1.0 108 . Using the general solution given in [4] for the
3’ s
system (3) and calculating X,» X, and the determinant D of the system, we obtain

f k m ] / m, kaZ m, [ My I
[ | 2 . £ = - - .
xl=—-——-(-———— + y Xz mz( + +1),

D ml Q ml D ml Q

D =2lwkH,/m/m,.

Neglecting the first and the second terms in the parentheses in the expressions for x,
and x, (with m

5 4 >> m2) and making use subsequently of the smallness of mz/ml, we get:
Q ———
L oh A
- —"—_ X = v YV Tm
2 k, 2 k, 2

Introducing the static displacements of the masses, Git = Fl/kl and 6;t = 2F2/k2, which
can be easily obtained from (2) at x = const, we can write finally

1 1
x, =— 3%}'Q, X, = 8;'0\'/ml/m .
2

4

We thus obtain for the relative displacement ¢ of small bodies m, in the complete detec-
tor system (8°% = n(n + zp)):
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1 )
(= — h(t+L)Qym/m, (5)

-~

i.e., the displacements are larger by a factor [ml/m2]1/2 than in a system with one degree of
freedom. It must be noted that if the Q factors are not equal, then the worse Q factor enters
in (5).

Let us determine now the fluctuation displacements of a small body. The fluctuation
oscillations of the end of the rod, recalculated in terms of the displacements of a small body,
are small compared with the fluctuation of the coordinate of the latter, due to the action of
the residual gas on the resonant system. Using [53 the expression for the "Fourier components"
of the coordinate fluctuations in the resonant regime ((xe)w), we write the fluctuation dis-

placements in a frequency band Af defired by the observation time, Af = 1/1:
2k TAF

x2 =(x2). Af = ,
z d msz

where k is Boltzmann's constant and T the temperature.

We note that by virtue of condition (4) this estimate coincides with the estimate of the
displacements of a small body, due to the fluctuation oscillations of the first body.

We present numerical estimates of the fluctuation displacements and the energy fluxes
sufficient for the registration, taking as the radiator the pulsar in the Crab nebula with

T = 3.3 x 10°° sec (w = 3.8 x 10° sec™ and a gravitational-radiation power P = lO38

5

erg/sec.
erg/cmzsec at the earth's surface.

. -12
fluct 8 x 10 cm.

Let us express the value of the flux in terms of the minimum observable displacements

corresponding to a flux t = 10~

At T = 10 sec and m = 100 g we get x

(z), using the formula given in [6] for the energy filux of the gravitational waves, t = ch2/2K
(where x is Einstein's constant). To this end, we express h in terms of ¢ from (5) and, sub-

stituting in the expression for t, we obtain:

QCQZCZ

m,

«(€ + )27

m,

Let us calculate first the value of &. For n = 10, we obtain from (1) £ = 6.6 m. At
a resonator-chamber length (superconducting suspension) LP =1.5m [1], Q = 2 x 108, ml/m2 =

103, end ¢ = 107 >

em, we obtain t = 10 erg/cmzsec.

It was assumed in this estimate of the flux that the signal will exceed the noise level,
In this case, however, it is possible to use an accumulation method, which yields a gain in
the signal/noise ratio by a factor n = 1/T (where t is the observation time and T the period
of the signal). A preliminary phase search or averaging over the phase decrease this ratio
by 8 and 34% [7]. Thus, in the reception of a periodic signal, one can hope to register a

flux t = 10710 - 1074 erg/cmesec.
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In conclusion, I am grateful to A.I. Tsygan and E. B. Gliner for useful discussions.
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THREE~PARTICLE PRODUCTION AMPLITUDE AT HIGH ENERGIES AND LARGE MOMENTUM TRANSFERS
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The asymptotic amplitude of elastic scattering B(S, q2) was investigated in [1, 2], using
the theory of complex angular momenta, at high energies S (S is the square of the energy in

2 1n S/m2 >> 1, where a' is
the slope of the Pomeranchuk trajectory sat q2 = 0). The problem was solved by summing the

the c.m.s.) and large momentum transfers q2 (with q2 << S but a'q

contributions, the so-called "Mandelstam branch points" in the angular-momentum plane, con-
nected with the exchange of a certain number of Pomeranchuk poles. It was shown that at
presently attainable energies the result does not depend too strongly on the detailed behavior
of the jumps on the cuts in the angular-momentum plane. The simplest form is obtained by
retaining in the contribution of the n~th branch point (n is the number of exchanged reggeons)
only the factor (-1)" connected with the antiunitary character of the reggeon diagrams. Such
an approximation is equivalent to neglecting the dependence of the reggeon~diagram vertices

on the energy, the momentum trnasfer, and the number of emitted reggeons. The scattering
amplitude then takes the form

-\/Zﬂa'qu 3

cos (y2ma’qlf + X)) & =ln~—2.q (1)
m

Here X, is the almost-constant phase, which depends little {logarithmically) on q2 and £, and

B(flqzj ~isB_e

Bo is a function containing no exponential dependence on q2 and £,

We present in this paper results obtained for the asymtotic amplitude of three-particle
production a + b > 1+ 2 + 3 at high energies and large momentum transfers, using a method
similar to that mentioned above. If we neglect, as in the other case, the dependence of the
corresponding reggeon—diagram vertices on the energies, momentum transfers, and the number
of emitted reggeons, then it can be readily shown that the production amplitude A is propor-

tional to o
Al£13 853 G104, ~B(E), 4))B(£,5.0,) +

2

k .
+ [ ——  B(£K)B(£,,.4k)B(&yy. 0, k). (2)

(2#)

l)Address after 1 October 1969: CERN, Geneva, Switzerland.
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