RESONANT DEPOLARIZATION OF NEUTRONS BY THE DOMAIN STRUCTURE IN FERROMAGNETS
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The passage of polarized slow neutrons through a strongly magnetized iron single
crystal was investigated in [1], where it was observed that the beam depolarization in the
sample depends in a resonant manner on the applied magnetic field, and has, as a function of
the magnetic field intensity, a series of approximately equidistant maxima with depths 1 - 3%.

In this paper we attempt to interpret this phenomenon theoretically on the basis of
notions concerning the residual domain structure of a ferromagnet in a strong field [2 - 6].

As is well known [T7], when neutrons pass through an unmagnetized triaxial ferromagnet
they become strongly depolarized as a result of rotations of the polarization vector in thé
domains, Under the influence of & sufficiently strong magnetic field, the domains oriented
at an angle to the field practically vanish, and the magnetization in all the remaining re-
gions become oriented parallel or antiparallel to the external field. This should result in
an ordered layered structure (see the figure) with a period 2d, in which the domains magnet-
ized against the field are strongly compressed (¢ << a), since the sample is in a state close
to total saturation.

Such a residual structure can be formed from the initial domain structure in a con-
tinuous manner, for example in a manner similar to that considered in [6].

The domains are separated by narrow transition layers of width 8 (shown shaded in the
figure), namely Bloch walls, in which the magnetization M is smoothly rotated through 180°
around the normal to the boundaries, and is on the average perpendicular to the induction
B=H+ bn ﬁ in the domains, the magnetizations of neighboring walls being opposite in direc-
tion, ,

On passing through such a structure, neutrons polarized along the external field i ve-
come depolarized only as a result of rotatisn of the polarization vector § in the transition
layersl). Rotation of the beam polarization vector in one Bloch wall was investigated in [8],
where it was shown that this rotation is small for thermal neutrons, and occurs non=-
adiabatically.

The action of the domain walls on the neutron spin

can therefore be represented in the form of a sum of 8- id

like pulses, i.e., their field can be written in the form:
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It is shown in [9] that even in the state of total saturation there should exist a de-
polarization due to magnetization fluctuations, but it is very small when T is lower than the
Curie point Tc’ and decreases with increasing magnetic field.
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Owing to the periodicity of the field By(x), the spin of the moving neutron is acted
upon by a rotsating field perpendicular to ﬁ, with hermonics that are multiples of w = mr”/d,
where v” = v cosfd is the neutron velocity in the direction no_z;ma.-l> to the Bloch walls., If the
Larmor frequency of the spin precession in the leading field B|] PO approaches the freguency
of one of these harmonics: 0 = gnE = kw (k is an integer), then the spin-flip probability in-
creases strongly - a phenomenon analogous to spin resonance {10]. This explains qualitatively
the series of depolarization mexima observed in [1], and also the dependence of their positio
positions on the neutron velocity and on the beam orientation relative to the domain structure.

We now perform a more rigorous quantitative calculastion of this resonant depolarization,
starting from the equation of motion of the polarization vector of a beam of neutrons passing

through the sample, in the form [T7]
dP/dt = g [P xBl, g =2, /h, (2)

where u is the magnetic moment of the neutron, and B(¥) is the induction at the location of
the neutron. Recognizing that Bx = 0 in the domain structure, we obtain from (2) the follow-

ing system of equations for Pz and Pi = Px * iPy:
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If the total depolarization is small, this system can be solved by the iteration method:
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where ¢(t) = A gtBZ(T)dT, T=v,

(1) in (4) and performing simple calculations, we obtain the following formula for the re-

%, and P0 is the initial polarization. After substituting

sonant depolarization:

AP, 29:5282 b, sin? 2
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The resonent depolarization is due to the unique interference of the small successive
rotations of the vector _l; in the Bloch walls, resulting from its precession around the field
B in the domains. Formula (5) is therefore similar to that for a diffraction grating. The
principal diffraction maxima of depolarization appear when the condition ¢0 = 27k (which
coincides with the condition given above) is satisfied, when the vector B performs k re-

volutions within the period of the domain structure. The width of these resonances A¢ v 2n/N
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determines the requirements imposed on the monochromaticity of the neutron beam and on the

perfection of the periodic structure, under which a maximum of order k can be observed:
Av/v g Y/ Nk , Ad/d < 1/Nk . (6)

The depth of the resonances depends quadratically on the number of traversed periods N, on
the thickness c¢ of the oppositely magnetized domains, on the width & of the Bloch walls; it
also depends on the neutron energy like v,

With increasing temperature, the width of the walls increases appreciably (8 & JIT/K,
where A(T) is the exchange constant and K(T) the magnetic-snisotropy constant) [2, 3], owing
to the decrease of K(T), and consequently the depolarization maxima become more distinct.
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Stimulated Mandel'shtam-Brillouin Scattering. 1. It is known [1, 2] that at suffi-

ciently low pump intensities I (IL < Il\,fgr), the SMBS component reflected by the region

0 < Z < £ has an intensity I . which is low compared with IL (linear scattering regime), and

MB
the line width decreases with increasing pump intensity
In2
A(z) S =Am‘/ (l)
MB(1in) ol

vhere Aw is the line width of the thermal Mandel'shtam-Brillouin scattering and g is the gain.
We present below estimetes from which it can be concluded that in an essentially nonlinear

SMBS regime (IMB(z=0) s I (z-—O) >> I ) the line width tends to
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