JETP LETTERS VOLUME 10, NUMBER 12 20 DECEMBER 1969

INSTABILITY AND INTERMEDIATE STATE IN CURRENT-CARRYING CONDUCTORS

M. Ya. Azbel!

L. D. Landau Institute of Theoretical Physics, USSR Academy of Sciences
Submitted 27 October 1969

ZhETF Pis. Red. 10, No. 11, 550 - 553 (5 December 1969)

1. We shall show that a sufficiently rapid change of the conductivity o as a function
of the magnetic field ﬁ can cause s conductor carrying direct current to become stratified
into macroscopic or microscopic regions with different values of the conductivity (the analog
of the intermediate or mixed state), and also the onset of a nonstationary mode. Such a
change occurs, in particular, upon appearance of diamagnetic and periodic structures, metal-
dielectric or dielectric-metal transitions with vanishing of the Landau bands (cf., e.g., [1]),
in plates in a parallel field [2], etc.

In view of the complexity of the problem, we shall use in the rigorous formulation
argunments based on simple and lucid examples.

2. Let T=o@EanaB =% (3 - current density, T - magnetic field intensity), with
o(H) = uoe(H/Hé), 6(x) = I when x < 1, and 6(x) = O when x > 1 ("metal-dielectric" transition).
Then when a current J = j(r) flows through a wire of radius R, we have ‘initially, obviously,
H(r) = 2wcoEr/c z Hcr/rc. However, when R > r > r_ there is no solution, since the "metallic"
phase (o = oo) leads to H > H, when r > r_, i.e., to o(H) = 0, and the "dielectric" phase
(0 =0) leads to H < H_ and o(H) = o,

similar contradiction can be easily cbtained for o(H) = o

, S0 that a contradiction is obtained in both cases. (A
1t ByH + (ay + 8H)0 (H/H)) at a
definite ratio between the coefficients a; and B ). In this case it is impossible to obtain
not only a symmetrical solution H = H (r) but also any kind of stationary solution. Let us
consider a more general case. Assume that vhen H < H ("metal") the relation ¢ = ¢ (H) is
arbitrary, and when H > H_ ("dielectric") we have G(H) = 0. Then H < H_ everyvwhere in the
conductor., In fact, H £ H on the metal-vacuum interface, and H = Hc on the boundary with

the dielectric. But outside the metal we have H = V¢ and V ¢ = 0, and the maximum moduli of
both the harmonic function and of its gradient are reached on the boundary of the region.
This means that it is impossible to have H > Hc outside the metal, i.e., no dielectric phase
can occur, Thus, the entire conductor is filled with metal in which H < Hc' Assume now, for
simplicity, that the wire thickness R + », Then as r -+ » the problem becomes quasi-one-
dimensional, H' = krj(H)/e. (Thus, when G(H) = o (H)&, where a is independent of H, J is
parallel to the wire (z) axis, H =0, and r + = ylelds dH /dr = hﬂJ(H )/e¢.) We see therefore
that for a solution with H < H, to exist a8 r + » we need a dlvergence I dH/J(H) ~ r, which
calls for ¢! (H )# o, (This is the necessary condition for the existence of an axially-
symmetrical solution H= H (r). A sufficient condition is that o'(H) be finite for all values
of H.) On the other hand, if a'(H ) = =, there is no solution with H < H,. According to the
foregoing, this means that the problem has no symmetric solution at all, and that at a constant
external potential difference on the ends of the wire there will appear in the wire either an
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asymmetry of the field, or else a moving phase boundary H = H,. (When ¢ = UOG(H/ZHC), only a
nonstationary solution is possible.) The velocity v of the boundary motion is of the order
of the Hall velocity, v v CE/Hc;’ from which we cen obtain the oscillation frequency w ~ v/R,
as well as the radiated power (see [3], Sec. 67).

3. Thus, the reason for the rigorous absence of a symmetrical solution is a singlularity
of 6(H). An arbitrarily small change of G(H), eliminating the infinite o'(H), leads to the
appearance of & solution that tends asymptotically to H, (see the formula for r(H) above).
Such a solution, however, is absolutely unsteble, This is best proved for large distances,
where the one-dimensional case H = Hy(x) takes place and the perturbations are plane waves in
y and z. In the case when 0 is diagonal and the perturbing additive is given by Elz = El(x)
exp{At) and B, = Ely = 0, the equation for E, tskes the form Ei’_ = f(x)El + f"(d)El/f(d),
where f(x) = (lur/cz)c{Hy(x)}, and Hy(x) is the stationary solution. The substitution E = VEE
leads to the well-studied (from the point of view of the asymptotic solution, the form of the

solution for shallow and deep potential wells, ete) Schrddinger equation

&= (A + Lol e

4 2 .

with boundary conditions determined by the continuity of E and E' and the boundary with the
vacuum. (In the case of an unbounded sample, it is necessary that E attenuate at infinity).
In the case of small f", f" > f'2/f at x = x, (ensuring a "potential well") there exists a
solution at definite positive values of A, i.e., instability sets in,

A similar analysis is always possible in the one-dimensional case (particularly when
direct current flows in a wire of round cross section).

A physical cause of the instability of a direct current lies in the following: The
current flowing through the sample produces in inhomogeneous magnetic field, causing an in-
homogeneity of the conductivity and a self-consistent inhomogeneous distribution of the
current density. Assume that in some region the current density experiences a fluctuation
change, say an increase. This changes the magnetic field, increasing it in some places and
decreasing in others. This in turn leads to a corresponding change of the conductivity.
Since o' (H) # O, the "integral" conductivity can increase, leading to a growth in the flowing
current, i.e., a growth of the fluctuation. Thus, an ebsolute instsbility of the initial
current distribution sets in., This can result either in a distribution that does not have the
initial symmetry of the problem, or in an oscillation corresponding to a nonstationary regime.

A stationary asymmetrical solution corresponds either to an intermediate case (if the
surface energy is positive) or to a mixed state (for negative surface energy; the role of the
correlation radius is played by the Larmor redius [1]).

We emphasize that in our analysis in Sec. 2 we used o(H) with a singularity only to
simplify the analysis. As in clear from the foregoing, the instebility of the stetionary
symmetrical current distribution is a rather general fact. It is caused by the essential non-
linearity of o(ﬁ) and nonlocality of the connection between H and 3

A determination of the form of the asymmetrical and nonstationary solutions and of their
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stability against finite perturbations for arbitrary ¢ () end B = B(H) (B ~ magnetic in-
duction) is a highly complicated problem (which reduced to nonlinear Maxwell equations) and
can be solved spparently only with a computer.

To observe these effects éxperimentally in the case of a large characteristic H, an
appreciable fraction of this field can, of course, be obtained from an external source.

I am grateful to I. B, Levinson and E. I. Rashba for useful discussions.
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1. When powerful laser radiation interacts with matter, a multiply-ionized plasms 1is
produced, and at relatively low radiation densities g the plasma can be regarded as being in
a quasi-equilibrium state. Physically this is conne;:ted with the fact that the electron dis~
tribution function is cut off in this case at energies ¢ close to the threshold of the in-
elastic processes (e ~ I{z) is the ionization potential of en ion of multiplicity z), so that
the ionization is brought sbout by the "tail" of the distribution function. At large q,
however, one can expect an appreciable violation of the thermodynamic equilibrium in the
plasma, owing to the fast electron diffusion in a region of energies greatly exceeding I(z).
As a result, the effective electron temperature becomes larger than I{z), and the gap between
the electron and ion temperatures (now limited mainly by the elastic electron-energy loss)
amounts to AT ~ h'erezq/Bmmzck = 0.8 x 10-l6q(M/m), where M is the ion mass and w the frequency

of the laser rediation. AT g 103 eV when q = 10]‘2 W/cmz. This occurs formally when

I(z)v;(z)

Bo = <l
‘O verr(z)

where € is the energy of electron oscillation in the field, and vi(z) and v___(z) are the

frequencies of the inelastic and elastic collisions [1]. Under the indicate:,fgonditions, the
ionization state of the plasma differs greatly from the equilibrium state defined by the Saha
formula.

The qualitative picture noted here has a direct bearing on the interpretation of the
results of plasme diagnostics by means of bremsstrahlung or by observation of the ion emission
lines. It is clear that in the region of fluxes corresponding to the condition BO < 1 the '
bremsstrahlung, say, will be harder then in the equilibrium case,

We consider below a model that makes it possible to caleculate approximately, under
strong-field conditions, such plasma parameters as the electron temperature, the ionization
multiplicity, the radiation yield, etc.

2. The electron distribution function F(e, t) in a plasma, as a function of the energy
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