tions, which assume the following form:

curle..-_’..gg.., (1)
c Jat
4 ~
curl {b —‘}rr(bV)B_BoM(B)]- : ot, (2)

where e and b are the vectors of the electric field and magnetic induction of the wave,
i = go + 3, EO is the constant field in the sample, and G is the conductivity tensor.

The dispersion relation obtained from (1) and (2) for a spherical Fermi surface is

2 AuNew (3)
c\/qHcosg

()

. o OM
g= 1 — 45sin?g =5

where 6 1is the angle Eetween X and gb.

Since the vector b of the wave is always parallel to the surface of the metal, the
second term in the left side of (2), which is responsible for the observed oscillations, is
equal to zero for a spherical Fermi surface if the field EO is directed along the normal. If
part of the Fermi surface has an elongated nearly cylindrical form, then the contribution to
the oscillations made by this part is zero if the axis of the cylinder is directed along the
normal. These conclusions agree with the experiments of [2,3].

Thus, on the basis of the presented experimental results and their interpretation, we
can state that the oscillations observed in the propagation of helicons in metals are in the
local limit a manifestation of the de Haas - van Alphen effect. The relative amplitude of
the oscillations of the resonant frequency of the sample (Fig. b) makes it possible, as fol-
lows from (3) and (%), to measure directly the amplitude of the oscillations of 3M/3B.

In conclusion, the authors are indebted to V. F. Gantmakher for a discussion of the
results, to I. P. Krylov for useful discussions and for supplying the still-unpublished ex-
perimental data, and to S. F. Kosterev for technical help.
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In spontaneous scattering of low-intensity light from thermal fluctuations of a liquid
surface there is no reaction of the electromagnetic field on the interface [1-3]. However,

if the intensity of the light is sufficiently large, such a reaction, which is nonlinear in
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the field, becomes appreciable and can lead to a buildup of capillary waves, i.e., to stimu-
lated scattering of light by the surface of the liquid. This effect is due to the pondero-
motive action of the electromagnetic field and to the presence of an interface, and the
liquid can be regarded as incompressible, just as in the case of free capillary waves.

Let us consider the incidence of a plane electromagnetic wave EO(;, t) = ﬁoexp[i(kxx
+kz - wt) ], the polarization of which is perpendicular to the incidence plane (x, z), on
the surface of a liquid having a dielectric constant € > 1; it is assumed that € = 1 in the
free space over the liquid and that the magnetic permeability is p = 1 throughout. The
boundary conditions for the field on the liquid surface z = §{, without allowance for rela-

tivistic corrections, are [2]

(n, B -E]=0; curl(E -E) =0, (1)

-
~

where n is the normal to the surface of the liquid. The field over the field is E
- 'E’O(}', t) + El + 7Y and in the 1iquia B = 'E’2 + 3? uhere the fields ¥y and E, are
determined by the Fresnel formulas for a flat surface z = 0, and the fields E(l) and §(2)
are due to the deviation of the surface from a plane. We shall henceforth confine ourselves
to capillary waves of the form { = quxp[i(qx - at) 1, klcql «< 1, ql@ql << 1, where 2n/k
is the wavelength of the incident light. In this case the propagation directions of the
waves E(l) and E(e) lie in the incidence plane, and each of them contains components with
frequencies w * Re @ and with wave vectors {kx *tgq, O, V/EE—:—(E;—E_EYE} and {kx tq, O,

- ./€eka - (kx * q)2) in the liquid. The amplitudes of these waves, as in the case of spon-

taneous scattering [1,2] can be expressed linearly in terms of Cq'
When account is taken of the ponderomotive action of the electromagnetic field, the

equations of the hydrodynamics of a viscous incompressible liquid assume the form

av de E? )
p.—-—= r,AV e Vp +p. v ,de=0. (2)
at dp 8n

with boundary conditions on the surface

ée g2 a"z 9% ¢
p+le~1~-p —) —— = 2p- + a-— =0,
dp 8rn oz ax?
(3)
d v, . av, 0.
dz ax

where ;, Py P> N, and o are respectively the velocity, density, pressure, viscosity, and

surface-tension coefficient. Introducing in (2) and (3) the new quantity

, de E?
S A
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we arrive at the ordinary problem of capillary waves (see, e.g., [4#]), but with modified

boundary conditions

E? v, 32 ¢
P’ +ie~1)— - 29~ +a =0,
8n oz ax?
()
av av
— = () )
dz ax

where it is necessary to retain in the expression for E2 only the terms with the frequencies
of the capillary waves. In the weak-damping approximation we get the following solution of
the characteristic equation:

22 3
q q
9-190 _Ziqzl_tio—-—ﬁ—. Qog(:—.)l/z,
p pno P (5)
po £1 k2 k2 =(k i q)2 -vek2~(k +q)¢=\K?~(k _q)*+vek’~(k ~q)®
- [ Y
8n q (Ikz{+\/ck2"ki )2

which differs from the ordinary solution for capillary waves (see [4]) in the presence of the
last term.

Ir IDIEE > 20, then the amplitude of the capillary waves can build up in time in ac-
cordance with this condition, wherein one of the two traveling capillary waves with specified
value of the wave vector q will be amplified. For a specified intensity I of the inci-
dent light, the same inequality I > cnno/hnlnl determines also the range of angles in which
the stimulated scattering of the light by the capillary waves can be observed.

It is possible to obtain in similar fashion the conditions for stimulated scattering
in the case when the wave vector of the scattered wave does not lie in the incidence plane.

At not too large intensities I, stimulated scattering is possible only in directions
close to the values given by the Fresnel formulas. The maximum frequency QO of the ampli-

fied capillary waves is determined in this case by the equation

(eI klk, | lkyl = vek?- k2 (6)
cn  VekZ-k2 (|k | +vek? -kZ )2

0

However, excessively small values of & and ¢ are not favorable for the observation of the

0
stimulated scattering of light by surface waves. For this reason, in particular, we did not

consider gravitational waves.

Estimates based on formula (6) show that for reasonable values of the frequency QO

the intensity I cannot be attained by modern c¢w lasers. When pulsed lasers are used, the

T >> 1, with QO limited from above by the

0
condition q < k. A numerical estimate by means of formula (5) with QO = 3 x lO7 sec'l,

pulse duration T is limited by the condition Q
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n="Tx 10‘“ poise, € = 1.7, and an incidence angle 6 = x/6 yields for the threshold inten-
sity I, = cnno/unIDI a value I ~ 8 x 108 w/cme. Such conditions can be realized, for exam-
ple, for liquid nitrogen and a pulsed neodymium-glass laser operating in the free-running
mode (T ~ 1073 sec).
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We show in this paper that the frequency dependence of ultrasound damping in a semi-
conductor has an oscillatory character in the presence of a homogeneous electric field whose
frequency  is much larger than the frequency of the sound. The oscillations are 'gigan-
tic," i.e., their amplitude is of the same order of magnitude as that of the oscillating
quantity itself *. We consider the case when the inequalities g£ >> 1, Qr >> 1, and qQ >> ab
are satisfied (q - wave vector of sound, # and T - mean free path and relaxation time of the
electron, ab - electron plasma frequency). For simplicity we confine ourselves to the case
of an isotropic medium and a parabolic electron dispersion law. The complete system of equa-

tions describing the interaction of the electrons with the longitudinal ultrasonic wave and

with the self-consistent field & is *¥
) ) )
(—+ v +e(EF +6’-.—--sz0.—){ = 0, (l)
ot m dp dp
? A
(—— ~s2 V2)y=— Y[fdip, (2)
a2 P
4.ne
V& =~ —(N-sfd3p), (3)

where u is the displacement in the sound wave, s +the renormalized speed of sound, A the
deformation-potential constant, p the crystal demsity, N the average electron density,

E= EgeStsin Qt the external high-frequency field (& + +0), m the effective mass of the elec-
tron, and € the lattice dielectric constant. In the absence of sound or plasma oscillations

* Tt is assumed that the lattice absorption of the sound is much smaller than the elec-
tron absorption, or.at least of the same order.

** We disregard the plezoelectric effect, since in the frequency region under consider-
ation the main role is usually played by the deformation mechanism of the electron-phonon
interaction.
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