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The surface roughness of a thin film can exert a significant influence on the spectrum
of the various quasiparticles (electrons, phonons, etc.), leading to a shift and broadening
of their energy levels. This broadening of the spectrum is similar in nature to the decrease
of the phase velocity and to the appearance of damping of normal waves propagating in a rough
waveguide made up of two infinite surfaces z = Cl(;) and z = a + QQ(;), where T = {x, v},
{x, ¥, 2z} are the Cartesian coordinates, and Ql(?) and §2(;) are random functions with zero
mean value.

In our case, the problem reduces to a solution of a Helmholtz equation for the wave

function ¥ (or a scalar potential in the case of a waveguide)
M+ Koy = 0 (1)

with allowance for the concrete boundary conditions on the surfaces Cl and Ce. We con-
sider here the simplest case of zero Dirichlet boundary conditions, when ¥(z = Ql) = y(z = §2
+ a) = 0. For electrons, for example, such & boundary condition corresponds to an infinitely
tall potential barrier on the film boundary; for phonons this means that the thin film is in
vacuum or, in other words, is an acoustic waveguide with absolutely soft walls.

Expanding these boundary conditions in powers of §l and §2 and performing the
averaging (...) over the ensemble of the realizations of Cl and §2, we obtain for the
average field (w) and for the fluctuating component ¢ the following relations, which are

satisfied when z = O and z = a:

<‘/,>+<¢aqS >=0;¢+(a<¢>-0, (2)
dz dz

With the aid of Green's formula we obtain from (2) the effective nonlocal boundary conditions

for the average field at the planes z = 0 and z = a:

2 26 (R,R” a<y(R) > ,
<pR)>| = o g LERRY oy ) 8002 g2, (3)
z=0,a4” dzgz’ z=z'=0,n 9z z'=0,a

2__,2_,2' AT > >, _ > 2L _.“’._» .
Here o = (£;) = (§,); PW(E, F1) = (61(0)8,(x")) = (E,(0)8,(x"))5 (£,8,) =05 R=(r, 2};
GO(R, R') is the Green's function of a flat wunperturbed waveguide with absolutely soft walls.
The plus sign corresponds to z = O and the minus sign to z = a. Formulas (3) are valid

only for the case of the so-called noncritical frequencies, i.e., those for which
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€ 1is the noncriticality parameter; O <e < 1. If € = O, then the width of the waveguide
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spans an integer number of half waves, and GO becomes infinite.

We assume further for simplicity that g = ¢ i(x), and consider the two-dimensional
Helmholtz equation. Then the solution (1) with boundary conditions (3) can be written in
the form

———r

<Y {x, z)> = (c le’ql+c2°-qu)‘IX\/k2-q2. %)

Substituting (4) in (3) we obtain a homogeneous system of equations for the determination of

¢y and e The requirement that its determinant vanish leads to the following dispersion

equation for the determination of the eigenvalues 9,°

ka? o —— —_—~
89, =a° —— [ VI-1Zctg(akyT1-12)W (t+a, ) dr -
an —oo
. 2 (5)
i N, o~ W
_ o' q'o’ Z—II——[W(BV+an)+w(B‘;_an)] y Nn=1,2..
a4k? =1 Bv

Here qg = nn/a are the eigenvalues of the unperturbed waveguides, and the corrections to
these values 5(;’,l =q, - qg are assumed to be small compared with the distance between
levels l&q_nl << qg - q%_l; W(t) 1is the Fourier transform of the correlation function;

Bv = /1 - (v2r2/a2k2), and a, = m.

We see that all the ﬁqn have imaginary parts, l.e., even those waves which propagate

in a smooth waveguide (and for which nr/ak < 1) acquire a finite damping in the presence of
the boundary perturbation (the quantum levels of the guasiparticles broaden). The form of
the sum entering in (5) shows that this damping is due to the transformation of a wave with
a given number n into all the remaining propagating modes. The level shift (Re Sqn) is due
to transformation into inhomogeneous (non-propagating) waves.

If the correlation radius ! 1is large compered with the wavelength (kI >> 1), then
ﬁ(t) is a "sharp" function. If the condition ! >> An is satisfied, where An = a(q:/ﬁn)
= a tan wn is the length of the cycle of the given mode, i.e., the distance between two suc-
cessive reflections (\un - glencing angle), the only importent term in the sum (5), regardless
of the value of N, is the term with v = n. Then, for example for a Gaussian correlation
function, the solution of the dispersion equation takes the form

k osi 2
8q, = osiny, -i0(e —(kl)z) if ._a_.k1>>1 ,
v ” ®)
ka?sin3 ¢ a?
5q, = Bf]-icosy,Vnke] if —ki>>1,
alcos 2y, a?

When & multimode waveguide is considered, N >> 1 (film thickness much larger than the
wavelength), the dispersion equation alsc simplifies considerably. In this case, if t << An’
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the sum in (5) can be replaced by an integral, as a result of which we get

1+Viye ’

a

(7

8qn s~

where V(wn) is the coefficient of reflection of the plane wave from a half-space bounded by
a rough plane [1].

We note that formula (7) can be obtained by calculating <wn(§)> as a result of succes-
sive reflections of a normal wave with an effective reflection coefficient Vv(y) {2,3]. It
is seen from the foregoing that such a method is suitable only for sufficiently broad wave-
guides (ak >> 1), it being necessary that the correlation radius of the roughnesses be small
compared with the length of the cycle (L << An).

Owing to the approximate character of the effective boundary conditions (3), formula
(7) describes the damping of the average field only at distances satisfying the inequalities
L(keoh/at)qg << 1 in the case when k! << 1 and L((kc)u/a]sinhwn << 1 if kt >> 1. We see
that if (o/l)2 << 1 (when kf << 1) or (kzo)2 << 1 (when kf >> 1) these distances greatly
exceed the length L ..~ (Im Sqn)'1 whitin which the average field attenuates.
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Nee and Prange [1l] have shown that a quantum resonance can be observed in investigations
of the high-frequency properties of conductors in weak magnetic fields (Larmor radius r
larger than the electron mean free path 2). This resonance is due to electrons that remain
practically trapped in a narrow skin layer of thickness © as a result of specular colli-
sions with the surface of the sample. The distance between the quantized energy levels of
such electrons turns out to be large enough to resolve the resonant impedance peaks even in
a weak magnetic field. This is how Nee and Prange explain the impedance oscillations ob-
served in 1960 by Khaikin in bulky samples of bismuth and tin [2].

In a weak magnetic field parallel to the surface of such a plate (of thickness d << I)
there can occur also a classical resonance effect, connected with the fact that the electron
specularly reflected from the opposite surface of the plate can frequently fall into the skin
layer. The electron thus moves along an open periodic orbit and interacts in resonant fashion
with the electromagnetic wave, if the latter is launched in the skin layer at the same phase,
i.e., the period of motion of the electron Tx satisfies the condition

aﬂk(pz) = 2nn. (1)
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