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A new resonance effect — magnetic parametric resonance (MPR) —
. . . . . . =
is predicted for semiconductors placed in a magnetic field H that
varies periodically with time and in a constant electric field
perpendicular to H.

We consider an electron gas placed in an alternating homogeneous magnetic field i || oz
and a constant electric field E. The value of H depends periodically on the time, with a fre-

quency v,
H =H,(l+ acos yt), a = const. 1)

The magnetic field is homogeneous in the conductor if the skin-layer depth 8y at the frequency
Y greatly exceeds the mean free path & and the sample thickness d, i.e.,
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Here ¢ is the static conductivity, N the concentration, £ the absolute value of the charge, m
the mass, and v the velocity of the conduction electrons. In addition, we assume that the ampli-
"tude Ey of the induced electric field is small in comparison with the constant electric field E

yé

Ey ~H_ a << E. (3)

It is well known that in a constant and homogeneous magnetic field the motion of an elec-
tron in a plane perpendicular to the vector Hy is analogous to the behavior of a linear oscilla-
tor with constant cyclotron frequency Qo0 = eHy/mc. The electron trajectory is described in this
case by the integrals of motion € = const and p; = const, where € is the energy and p; is the
projection of the electron momentum on the magnetic-field direction. In the case of an alter-
nating magnetic field (1) (neglecting the field Ey (3)), the trajectory is determined by the
same conserved quantities, in contrast to the situation considered in [1, 2]. In other words,
although the parameter of the system (the cyclotron frequency) varies with time, the system
remains conservative. The motion of the electron in a plane perpendicular to H is more compli-
cated and contains not one frequency {,, but an entire set of frequencies we = {1y - ny (where n
is an integer).

It is known that the energy absorbed by electrons in a constant electric field has a maxi-
mum when the natural frequency is zero, i.e., when

Q, =ny. 4)

o

In metals and semiconductors, this resonance becomes ''smeared out'" by collisions between the
electrons and scatterers. Resonance is observed if the collision frequency v is the smallest
quantity

v <<0,, vy (5)

Thus, if the conditions indicated above are satisfied, a resonance effect should be observed in
the electron-hole plasma of a solid; we call it magnetic parametric resonance.

The time-averaged power Q absorbed per unit volume of the conductor equals
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where Ehv is the time-averaged conductivity tensor of the electron gas. It can be easily ob-
tained from Boltzmann's equation. At an arbitrary dispersion law, the tensor oy is given by
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fy(e) is the equiiibrium distribution, S(e, p;) is the area of the intersection of the equal-

energy surface €(p) = € with the plane p, = const. We see thus that the resonance condition
takes in the general case the form

pno = NY. (8)

In other words, there are p resonant series with n resonances in each. It is clear that the
number of resonant series is exactly equal to the number of nonzero Fourier components of the
electrons in a given direction. The resonance line shape depends essentially on the topology of
the equal-energy surface. In the case of quadratic dispersion, the line shape and the character
of the singularity can be easily obtained by using the results of [3].

We present the components of the time-averaged temsor Oy for a conductor with detenerate
statistics in the case of isotropic and quadratic dispersion
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If we use the known asymptotic forms of the Bessel functions [4], we obtain the resonance ampli-
tude in various limiting cases.

1. Fundamental resonance (N = 1)

y az, a<< 1, (10)
T xx ~aor 1 . .
a~l(l+ sine), a>> 1. (11)
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2. Resonance at higher harmonics (n >> 1)

[nashal='exp[- 2na(a cha - .sha)], (12)
7 ~g Y cha = g1, na(acha - 'sha)>>1;
xx
v n-2/3' na(acha -sha) <<1, a=1. (13)

It is seen from these formulas that the amplitude of the resonance at high harmonics
decreases slowly at o = 1 with increasing n. At a = 1 (see (12) and (13) for the criterion) the
amplitudes decrease exponentially with increasing n. For the fundamental resonance (n = 1), the
case of greatest interest is (10), for it appears in forst order in a”!, and the amplitude oscil-
lates with changing depth of modulation a.

Insofar as we know, MPR has not yet been observed experimentally. The resonance can appar-
ently be observed in bismuth in the frequency interval 10° sec™ < y < 10'? sec™! at low temper-
atures and in magnetic fields on the order of a kilo-oersted.

The author is deeply grateful to E. A. Kaner for a discussion of the results.
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Nonlinear absorption of sound and helicons is calculated in
the presence of magnetic breakdown, which consists of interband tun-
nel transitions of the conduction electrons in a strong magnetic
field. It is shown that magnetic breakdown greatly extends the
amplitude and wave-vector interval in which nonlinear effects are
essential in wave damping. So strong an influence of magnetic
breakdown is attributed to the singular random structure of the
magnetic-breakdown spectrum.

1. It is known that acoustic and electromagnetic waves are damped in metals in the
presence of strong spatial dispersion mainly as a result of their resonant interaction with a
chosen group of conduction electrons. This process is usually treated within the framework of
the linear theory, which neglects the effect of the wave field on the dynamics of the electron,
and leads to a well known result, viz., Landau damping, which does not depend on the electron
relaxation time tg. +The 1imits of applicability of the linear approximation are set by the
inequality tg! >> w(q, ug), where i is the characgeristic frequency of the electron motion in-
duced by the resonant interaction with the wave, q is the wave vector, and u, is the character-
istic energy of electron-wave interaction.

In the usual (quasiclassical) situation, the condition tgl is violated at such high values
-of q and uy, that at first glance the observation of nonlinear effects in wave absorption by
metals entails considerable experimental difficulties. The purpose in the present article is to
demonstrate that magnetic breakdown in metals [1] changes qualitatively the entire picture of
nonlinear wave damping (NWD), and makes it possible to observe MB at values of q and wave-field
intensities I, perfectly attainable in contemporary low-temperature experiments.

2. We consider here closed magnetic-breakdown (MB) systems of electron orbits in p-space
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