one in a small space-time region. According to (6), the dimensions of this region are deter-
mined by the quantity (4).

5. The value of T; from (1) leads, when substituted in (4), to an elementary length
2~ 10712 em.  Yet experiments (particularly those aimed at verifying the dispersion relations)
confirm even now the validity of the locality principle, all the way to scales on the order of

1075 cm. There are grounds for assuming that % is actually even much smaller and coincides
with the quantum-gravitational length %5 ~ 107°% [7].

All the foregoing constitutes one more argument against the existence of a limiting tem-
perature of the order of (1). It either does not exist at all, or its order of magnitude is
much larger than the pion mass (for & ~v lg, for example, we have T, 10'° GeV).4) Accordingly,
the hadron density of states either increases asymptotically more slowly than an exponential
with linear argument, or is characterized by a temporal parameter that assumes much larger
values as E - « than at small E.

We are grateful to E. L. Feinberg, who called our attention to the problem of the limiting
temperature, for valuable discussions, and also to B. L. Voronov for a critical remark.

l)Actually these arguments are not necessarily valid, since the indicated data admit also
of another interpretation [2].

2)In particular, for a free nonrelativistic particle the quantity G(%X, X , t) & t3/2
describes the "spreading" of an initially localized packet.

3)JA more correct analysis based on the '"smoothing' of the ¢ function in the right-hand
side of the equation for the Creen's function leads to practically the same result.

The idea of the limiting temperature in connection with quantum-gravitational effects is
developed in [8].
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A mechanism whereby strong-coupling magnetic condensons are
produced is indicated and systems that may be suitable for the real-
ization of this mechanism are indicated.

Magnetic condensons (MC) are self-consistent states of the golaron type in homopolar crys-
tals, and are produced by sufficiently strong magnetic fields, 10° Oe < H < 10% Oe [1]. Rela-
tively simple quantitative results for the self-energy of the MC, for its effective mass, and
for other characteristics can be obtained provided that the dimensionless parameter of the prob-

lem is %2
pp 1 mD << 1
y= ry - 87 p, 'ﬁzps! (1)
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where py = vch/eH is the characteristic magnetic length, D is the deformation-potential constant,
p is the density, s is the speed of sound, and m* is the effective mass of the electron For
typical semiconductors, the inequality (1) is well satisfied up to fields 10° - 107 Oe, so that
the electronic part of the MC wave function can be expanded in only the states of the lowest Lan-
dau band. A situation similar to that of condensons is quite common; thus, for example, in
helium gas at densitites ng lower than a certain critical value (ng)er = 2x10%! em”?, a magnetic
field of the order of 5x10° Oe is capable of producing the so-called large-radius ions (l.r.i.),
which constitute regions of weak rarefactlon of the gas, in which electrons are localized [2].

For the 1.4.i. we have r; = (l/ﬂnoao)(T/uH), where T is the temperature and a, 1s the length

for electron scattering by the helium atom. The inequality (1) holds at n, < 102tem™? and

H < 5x10° Oe. At y << 1, however, the self-energy turns out to be much lower than uH, so that
either intermediate- coupllng or weak-coupling MC are realized up to fields 10° Qe.

The purpose of the present article is to show that the self-energy of the MC and of the
1.4.i. is close to uH for systems for which y becomes of the order of unity in fields 10% — 10°
Oe, and the depth ]E I of the electronic level in the condenson well is much larger than the
energy hs/p, of the phonons interacting most actively with the electrons, i.e., strong-coupling
MC are possible in these systems in principle. Let us consider an electron in a classical non-
polar elastic medium. The self-energy of the system, after minimization with respect to the
components of the strain tensor, is a functional with respect to the electron wave function

1
¢() [ . e+ 2 A)p|? D?
Frlgtafl—e— _ | 14 }dr - uH. (2)
2m 2ps

In the absence of a magnetic field, the dependence of F* on the reciprocal radius k of the local
state takes the form shown in Fig. 1 (curves a to ¢ correspond to different forces binding the
electron to the medium; F*(k) vanishes at k = ky = 15%2ps? /m*D? ). In typical semiconductors,
case a is realized as a rule, namely they either have k, on the order of the lattice constant

so that the macroscopic description does not hold, or else an important role is assumed, even at
k < ko, by anharmonicities that are not accounted for in (2) and lead to a rapid growth of the
free energy of the system (Fig. 1, dashed line). This result was obtained long ago by Deigen
and Pekar [3). 1In case ¢, the condenson can be produced without a magnetic field, but this case
can hardly be observed in a solid. 1In helium gas, the case ¢ corresponds to a density

ng > (ng)cp, when the electron forms an ordinary negative ion [4].

We consider next systems close to the case b, in which stable condensons can still not be
produced without a field, but the situation is close to the threshold. Such systems, possibly,
are solidified inert gases, where the values of ps? are much lower than for typical semiconduc-
tors, and D is apparently smaller, but not much. Measurements of the electron mobility have
revealed in such substances no states of the condenson type, but the electron-phonon interaction
turned out to be appreciable [5]. For helium, the case b corresponds to ny = {ng)cr.

In case b, the magnetic field plays the role of the push that makes the system go over the
threshold and can by the same token ensure the formation of strong-coupling condenson states.
It is precisely in this case that a magnetic field of the
order of 105 — 10° Oe leads to y = 0 in (1) and the expan- %o (k) ,
sion of ¢(r) must take into account all the Landau bands; Fo'lky) -7
the functional (2) can be investigated in this case only
by a direct variational method. 1In a magnetic field, the
problem becomes axially symmetrical, and therefore F*
determined by the values of two reciprocal radii, longi- N
tudinal (k”) and transverse (k,); for concreteness, we ~ P
choose the trlal functions in the form ¢(r) =
(2ﬂ)3/2k k1 Zexp[- kip - kzzz] The MC corresponds to a ¢
negatlve m1n1mum of the surface F*(k,, ky), with
Fr(k{, ki) = Fg(y). If y << 1, then ki = (20,)7}; the f ¢
dependence of F (x?, ki) on ki is shown in Fig. 1 (curves
d and e); the characterlstlc MC energies satisfy in this N /
case the L:2:3:4: theorem [6]1. At y > 0.3, the quantlty SN
Fr (Y) increases with increasing y more rapldly than in
the approximation of the lowest Landau band, i.e., Fig. 1
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ﬁ’ﬂﬂéaﬂ inclusion of the remaining bands leads to a ”stre thening' of the MC.
PAL 1y Finally, when vy approaches the value Yepr = 37 L/%m/6 = 0. 55, the con-
= denson minimum on the F* &y kp) surface goes over to a saddle point;
the situation corresponding to ¥ 5 Ycr is shown somewhat arbitrarily
by curve f of Fig. 1. Near Yycr, the 1:2:3:4: theorem ceases to hold
even approximately, and the conditions for the formation of a strong-
coupling MC become much more favorable: at y = ycr the depth of the
electronic level is |Ej] = 5|F | Further increase of y does not
lead to the appearance of a minimum on the F* (k:, ky) surface. This
behavior of the system is similar to the un11m1ted decrease of F*(k)
of a harmonic lattice in the absence of a magnetlc fleld (the "eriti-
cal" MC is almost spherical in shape: (kJ_)cr = (2/3F kgs (ku)cr =
(2/3)2k,), so that at y > yer the function F* (k;, k) acquires a mini-
Fig. 2 mum corresponding to the MC only when the anharmonicities are taken
into account (the quantitative calcuatlons may call also for some
modofication of the deformation-potential approx1mat10n) Since (k%) cr and (k{)cp are each
approximately half as large as kg, the anharmonicities in cases close to b are still small at
Y = Yer, so that the system is able to increase strongly the self-energy of the MC when y exceeds
Yer. The behavior of F§(y) at Y, > Ycr can be described quant1tat1ve1y for helium gas with
n, = 2x102! cm™3, by using for F*{¢} the expression given in [2]

o+ —A) b2

. c 27k %a Zﬂﬁza°n°
Fiigl = f—T—- +vn°T(1-exp[ |4,|2] dr-—m—— -uH. (3)

At y << 1 we can expand the exponential in (3) up to terms including |¢|*, and obtain as a
result an expression similar to (2). The dependence of F*(Y)/uH on Y is shown in Fig. 2 by the
solid line, while the dashed line is obtalned in the approx1mat10n using the lowest Landau band.
The value yep is reached at no = 2x10%! cm =3 and H = 2.5x10% Oe. For H = 10° Oe, when vy = 1, we
have IF | = 0.5x1072 eV and |E [ 3.2x1072 eV. The local formation is then more like an ordi-
nary ion than a large-radius ion. Figure 2 should describe adequately the behavior of MC in
systems corresponding to the case b, if such systems can be found.

The author is sincerely grateful to E. I. Rashba for important remarks and for a discus-
sion of the results.
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