where EO - field amplitude, e and m - charge and mass of the electron, w - frequency of

light, and Vers {(e) - effective frequency of ion-ion collisions, we obtain € ~ 3 x 10

The time between the ion-electron collisions is A3 x 10_13 sec and the electron mean free

7

path is ~30 u. The volume of the heated plasma is consequently ~3 x 107 cm3, giving an

average energy "2 x 103

eV for the deuteron energy. This value agrees with the earlier
estimate.

The investigations of plasma heating by powerful laser emission is continuing.
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In investigations of low-temperature properties of metals placed in strong magnetic
fields H it is customary to neglect the spatial inhomogeneity of the field, Under the con-
ditions of the experiment the field satisfies under the experimental conditions the inequality
R << L (R - characteristic Larmor radius, L ~ H/|VH|). If the effects considered are non-
vanishing in the zeroth approximation in the quasiclassical-approach parameter k = ﬁQ /e v
10 -3 - 10° -k (QO, 0~ characteristic Larmor frequency and energy, respectively), then the
condition R << L actually makes it possible to assume, with good accuracy, that the field i
is homogeneous. The situation is noticeably altered, however, when the quantum magnetic-
breakdown effect (interband tunnel transitions) [1] becomes appreciable. We shall show in
this note that under conditions of magnetic breakdown even very small inhomogeneities of
ﬁ(;) greatly distort the electron energy spectrum and lead to the formation of unique quantum
magnetic traps with characteristic dimensions L., We shall carry out the analysis for a

field T = (o, 0, Hz(d)), which arises, for example, in pulsed fields as a result of skin
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effect in the sample.

If the inhomogeneity of the magnetic field is sufficiently small, then it is convenient
to investigate the dynamics of the conduction electron in terms of the energy spectrum that
7 arises in a homogeneous magnetic field ﬁoh ﬁ(x). We shall
consider here the case when the magnetic breakdown in s

field ﬁo (Ko = (o0, Hox, 0) perpendicular to one of the

Wan:

o
)** reciprocal-lattice vectors B = {0, b, 0) leads to the for-
X

mation of a distinct band structure of the energy spectrum.

1 7 For example, such a spectrum arises for the electron-orbit

configuration shown in Fig. 1 (1, 2 - numbers of bands).

The quasiclassical wave function of the electron can be

Fig. 1 represented here in the form
E-En(¢lpzl Ho)l E"(¢)-En(¢+2vr) » (1)
Y . Pr.r P,oz.
(n) eH, x 1 —— i )
111¢f:£my° ) -"ﬁ'-"z(PYo =, H,)e R, H »
ch )
R = —— 5

eH (2)

oy oo Mo = (G0 8y b v B () 0y 0= oy

Vg = Vg + 2n° (22)
Here n, ¢, P, py - conserved quantum numbers, namely, p, - projection of the quasi-
momentum on the vector o» the discrete quantum number n is the number of the "magnetic"

band, the continuous quantum number ¢ is the analog of the Bloch quasimomentum and numbers
the states inside the "magnetic" band, and at the chosen gauge the degeneracy is with respect
to the number pyo; a2 is the crystal-lattice vector, the function f B/ is analogous to the
periodic multiplier of the "ordinary" Bloch function, and R

periodl) (R~R

0 plays the role of the new

).

Using theoresults of [3], we shall point out several important properties of the
functions En and w(n): (a) in states with quantum numbers n, ¢, P,» and p_  the average
velocity transverse to the magnetic field differs from zero, viz., v, = (cb/eﬁH)BEn/3¢ v eo/b,
and vy = 0, i.e., x is the direction in which the motion is infinite; (b) in the general
case, when the magnetic-breakdown probability W is not small and is not too close to unity,
the characteristic widths of the magnetic bands and the characteristic distance between
them is of the order of %Q.; {c) the functions E and w(n) are extremely sensitive to changes
of the parameter HO’ viz., the energy En of the magnetic band chantes by an amount 1Q  when

0
Ho changes by an smount ~ KHO, and similarly Bw(n)/aHo n w(n)/KHo.

l)The detailed structure of f(n), which can be readily determined in the quasiclassical
approximation with the aid of the method of [3], is immaterial here and will not be written
out in what follows.
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If VH # 0, then the degree of the influence of the inhomogeneity of H(x) on the dynamics
of the process is determined, in accordance with the foregoing estimates, by the relation
o = 6H/kH = R/kL, where 6H = RVH is the change of the magnetic field over the period of RO.
We shall assume henceforth that o << 1, It can be shown that this inequality is compatible
with the relation i[;, ;] = cb/eH(;) A R << kL makes it possible (in the first approximation
in a) to regard the quantum number n as conserved (pZ and pyo are rigorously conserved) and to
describe the motion of the electron in a weakly inhomogeneous field with the aid of the

classical Hamiltonian
Mo x)=E(b(p ), px) S(p,) =cbp, /et (x), (4)

i.e., & and ; commute in this approximation.

The motion of the particle in the phase space (¢, x) follows the trajectory x =
xn(¢, E, pz), where the function xn(¢) is determined by the conservation law En(¢, P,» H(x))
= E. The function xn(¢), Just as En(¢), is periodic, and consequently motion with a given
n is finite. The width of the produced quantum "trap," as follows from the estimates above,
is of the order of kL. This is illustrated by the scheme of in- Epfx)
clined bands En(x) (¢ is fixed (Fig. 2); the shaded bands repre-

sent the allowed energy values corresponding to different values

of ¢). As seen from Fig. 2, a given value of E generates a set of Fl—

"traps" corresponding to different magnetic-band numbers. Quantum
tunnel transitions take place between regions of finite motion [
having different values of n. The probabilities of the transi- ~ael >
tions are v exp(-d/R) << 1, where 4 n kL is the minimum value of Fig., 2
2
|z, (6) - x_(8)[°.

When kL << 2 (the mean free path), the "traps" should strongly affect the macroscopic
properties of the metal; in particular, they should change its transverse electric conducti-
vity O x’ In a homogeneous magnetic field, the motion along the x axis is infinite (see
above), yielding the estimate o ™ 9 (00 - electric conductivity when H =0 [3, 5]. 1In
a weskly inhomogeneocus field, the electron executes in the "trap" a periodic motion with a
characteristic frequency & ~ ay. If @ty >> 1 (t0 - relaxation time), we have in accordance
with the general theory of galvanomagnetic phenomena [6] Oy ™ co/(fzto)2 ~ (KL/£)200<< g
These estimates can also be obtained directly from the exact expressions for the current Jx
and for the non-equilibrium addition to the density matrix pn(px, X, pz), which satisfies

the classical kinetic equation

13
'}ﬂc'i)(Px’ pz,x)lP"(le Py X) }Px"*' pn/'o = CG%E&-VX (¢ (Px )I X, P:)I
(5)

2w
~— 2 (dp,[ddp, ($,p,. X)v,($,p,, X).
(27%)3¢c n °

2)The latter phencmenon is analogous to the Zener breakdown [h].
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Here {.. .}Pxx are the classical Poisson brackets, 5 the electric field intensity, and fo the
Fermi function. We present without calculations the expression for j(x) obtained for the
configuration of Fig. 1 under the assumption that W = 1 (but (1 - W)kL >> R), when the band
spectrum (1) represents slightly broadened Lendau levels corresponding to the trajectories

shown dashed in Fig. 1:

o o*& 41 -W)eHh\?/ H \¥,k 35 |

° c

The integration is over all the P, for which magnetic breakdown takes place, and S(sz) is
the area enclosed by the dashed trajectory in Fig. 1 (¢ is the Fermi energy).

The inequalities R << kL << %, which are necessary for the occurrence of the "traps,"
can be readily satisfied in fields of 105 Oe if L lies between 1 and 10 cm. When R 2 kL, the
tunnel transitions between the "traps" become appreciable, and the character of motion is
greatly changed. These questions will be dealt with in a separate article.

The authors are grateful to I. M. Lifshitz for valuable discussions.
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The free energy, and hence all the remaining thermodynemic quantities, are known at
present for only one system that undergoes a phase transition and has a finite interaction
radius, namely the two-dimensional Ising lattice with nearest-neighbor interaction. This
problem was solved by Onsager [1]. Great interest attaches therefore to an investigation of
the phase transition in other models that admit of an exact solution. We obtain in this
paper an exact solution of the decorated plane Ising model with non~
'magnetic impurities. We define as decorated the lattice shown in E

Fig. 1 and consisting of two sublattices. The light and dark cir- ®

cles represent different aetoms, A and B respectively, with mag-

netic moments that can be directed either upward or downward (o =

t1). Only the neighbors joined by solid lines interact. The Ha-

1)

miltonian of this system has the usual form for the Ising model™ ":

l)A similar model (without impurities) was investigated in Pig. 1
detail by Syozi and Nakano [2].
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