Here {.. .}Pxx are the classical Poisson brackets, 5 the electric field intensity, and fo the
Fermi function. We present without calculations the expression for j(x) obtained for the
configuration of Fig. 1 under the assumption that W = 1 (but (1 - W)kL >> R), when the band
spectrum (1) represents slightly broadened Lendau levels corresponding to the trajectories

shown dashed in Fig. 1:

o o*& 41 -W)eHh\?/ H \¥,k 35 |

° c

The integration is over all the P, for which magnetic breakdown takes place, and S(sz) is
the area enclosed by the dashed trajectory in Fig. 1 (¢ is the Fermi energy).

The inequalities R << kL << %, which are necessary for the occurrence of the "traps,"
can be readily satisfied in fields of 105 Oe if L lies between 1 and 10 cm. When R 2 kL, the
tunnel transitions between the "traps" become appreciable, and the character of motion is
greatly changed. These questions will be dealt with in a separate article.

The authors are grateful to I. M. Lifshitz for valuable discussions.
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The free energy, and hence all the remaining thermodynemic quantities, are known at
present for only one system that undergoes a phase transition and has a finite interaction
radius, namely the two-dimensional Ising lattice with nearest-neighbor interaction. This
problem was solved by Onsager [1]. Great interest attaches therefore to an investigation of
the phase transition in other models that admit of an exact solution. We obtain in this
paper an exact solution of the decorated plane Ising model with non~
'magnetic impurities. We define as decorated the lattice shown in E

Fig. 1 and consisting of two sublattices. The light and dark cir- ®

cles represent different aetoms, A and B respectively, with mag-

netic moments that can be directed either upward or downward (o =

t1). Only the neighbors joined by solid lines interact. The Ha-

1)

miltonian of this system has the usual form for the Ising model™ ":

l)A similar model (without impurities) was investigated in Pig. 1
detail by Syozi and Nakano [2].
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H=-—,,2i’0,0i: (l)

where the prime denotes that the summation is carried out only over the pairs of interacting
neighbors. Recognhizing that o = 1, we eliminate in the usual manner o from the exponent in
the partition function (see, e.g., the book of Landau and Lifshitz [3]), and sum over the

spin configurations of the B-atoms:
Z=Xexp(l/TE 0;0;) =( chi/T)aNSM (1 +o,0,thl/T) =
{o} Ui {ol 1 (2)

=(chl/T)*N22N S 1°(1 + o4ohth?1/T) .
oAl

Here oA - spins of the A-stoms, N - number of unit cells, and

1283 N 1 +xa;‘a;‘) = S(x; =exp[ Nf(x) 1, (3)
{oAlij
where in the limit of very large N [1, 3}
27
Fix) = 1/8a2 (1 [(1 +x2)2 = 2x(1 = x*)(cosw, + cOS w, ) w dw,. (%)

o]
Thus, the difference between the decorated Ising lattice and the ordinary one is trivial,

namely, here we have

x=th2(//'r)', (5)

Assume now that M out of the total number 2N of the B-atoms are replaced by nonmagnetic
atoms, which are randomly distributed and rigidly fixed. Physically this means that the
impurity atoms have been introduced into the sample at a sufficiently high temperature, and
the time of relaxation of their position greatly exceeds the spin relaxation time. Then the
partition function of the model with the impurities is

Zx = (chi/T)N - 2MPN-M sx(x) (6)
where

- . ~ A
svx) =2°N 3 N1 43 . (7)
idgifi I

Here X = x or X = 0, depending on whether the bond joining the A-atoms contains the usual

B-atom or the nopmagnetic impurity atom.

It is easy to see that S*(x) can be expressed in terms of the M-th derivative of S(x):

xIN- M dMS(Z)
M! dzM

. (8)
z=1/x

Strictly speaking, the value of S¥(x) obtained by differentiation corresponds to a partition

S*(x) =

function averaged over all possible impurity distributions. However, in the thermodynamic
limit of interest to us (N + =) the statistical weight of the nonrandom distributions vanishes.

Using (8), we express the derivative in terms of a contour integral:

IN- M M+1 1
S*(x) ="2 - fexp; NI f(z) ——},——-h(z—;—)]idz, (9)
w
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where the contour surrounds the point 1/x. We note that although the function f(z) is not
regular, exp[Nf(z)] is analytic in the entire complex plane for all finite N. We can thus
deform the integration contour and use the saddle-point method. The asymptotic value of

S*(x) as N > = is determined by the value of the integrand at the saddle point:

% (x) ~x2N1r expIN[(z,) - 2¢ln(z- ;_)]}_ (10)
Here ¢ = M/2N is the impurity concentration, and the position of the saddle point as a function
of x is given by the equation
2¢
z - 1/x ) (11)

fz,) =

The derivative f'(z) which enters in this equation can be expressed in terms of the complete

elliptic integral of the first kind K(k):

Fo(z) = 2= _.I.(lK(K) _1)dl°" , (12)
1+2z2 2 \m dz
where
- 22 dl
K_4z(l z); nxn_l_._ 222_ 422. (13)
(1 +22)2 dz z 1-22 1+z

We now obtain from (6) and (8) the free energy of the considered model with nonmagnetic

impurities:
. ~F/NT =4(1 — c)lnsh [ /T + (3 = 2¢ )12+ f(z ) — 2¢cln (z, - 1/x}. (1h)

From this we easily get, differentiating with respect to the temperature, the expressions for
the internal energy and for the specific heat.

The phase transition occurs when the saddle point coincides with a singular point of the
function f(z), the singularities of which lie on circles of radius v2 with centers at the
points z = *1, Since 0 < x < 1, the saddle point can coincide only with the singular point
z, = Y2 + 1, where f'(zc) = 1 /2. Using (11), we obtain an equation for the transition

temperature:
x =th21/T_ = [1+y2(1 - 2¢)]"L, (16)

In the limiting cases we have
I arcth (/1 +v2+ 1)+ c A1 +/2~ 0,764 + 0,664c, ¢ << 1
U T U V)
<

—lf ——
2 1< 2¢

1 (17)
ﬂ(—z——c<< 1,

When ¢ > 1/2, there is no phase transition, since our system breaks up at such impurity con-
centrations into non-interacting subsystems of finite dimensions.

Using the expansion of f'(z) near z, = 2+ 1,

t02) =-1-:+ z —z: _+3+\/§-'+_2—ln3‘42_(l/—2_:—1) , |z -z <1, (18)
vZ 1+ 2)? v lx -z
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we obtain for the specific heat near the critical point an expression that is valid when
Il = I|T - 7 |/7° << 1:
c e''Te

c ] VZ+1-4c (1 =2c)[1+y2(1-2¢)]
F‘-=4-—-—2-(1.-2,C)\/‘/§-.* + )Zc
Tc (19)
(1+v2)?r .,
1l - e———————A(alr ).
x(1 - === (alr]))
We have introduced here the function A(£), defined as the solution of the equation
nlnn = - (20)
for small £ and n:
n = A(g). (21)
Its derivative are
- .3
ATCE) = A(E)/(E-A(E)) s A™(H = A (O /MH. (22)
Plots of all the functions are shown in Fig. 2. The coefficient a(c) in (19) equals
1+y2)r(l=2¢) 1 (1+v2)%n
afc)- —f—exp ———-—-8—;————X
8cxf c
3 +v2
x(1 - 2¢c .
( 1 +v2)2n
Thus, unlike Onsager's well known result [1], the spe-
cific heat of the model with nonmagnetic impurities
remains finite at the transition point at nonzero im- qobr qona”
purity concentrations, and its order of magnitude is A
A
1/c. Vhen |t| - 0, the first derivative of the spe- 203l 4
?
cific heat with respect to the temperature diverges
like A". When ¢ << 1, the specific heat behaves in
the vieinity of ln|t| << 1/c like 1n|t]. Qo2+
The correlation function of the A-~atoms of the
model with impurities can be obtained in a similar 207 A
manner:
> - > -
<afol> = gh(x, R} =g, (z,, R); R=R,-R,, (24)

N 1 o
where go(z, R) is the correlation function of the 405 41 &
usual quadratic Ising lattice, and z, is determined Fig. 2 '
from (11). Using the well known results of Kaufman
and Onsager [L4], Yang [5], and Fisher [6] for the function gy» We obtain the following:

a) At the Curie point, the correlation function decreases in the usual manner like R—l/h.

b) The correlation radius increases near T, like [B(c)A(dT)]-l.
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¢) The spontaneous magnetization below the transition point behaves like [B(c)A(aT)]lls.

Accurate to a factor on the order of unity, we have

SUVBIe (o BevE (25)
Blc) exp 3¢ (l -3 T ‘/2)2)

We note that the lattice magnetization due to the A-spins does not reach saturation at
T = 0, since a fraction of the A-atoms is isolaeted from the remainder of the system as a
result of the nonmagnetic impurities.

In conclusion, we can express the hopes that the character of the singularities obtained
in this paper, as well as the (qualitative) dependence of the transition temperature on the
impurity concentration, are possessed not only by the model under consideration, but also by
a broader class of systems, although the symmetrical form of the specific-heat singularity is
a typical property of this model, connected with the Kramers-Wannier symmetry of the initial
impurity-free model.

[1] L. Onsager, Phys. Rev. 65, 117 (19hk),

(2] I. Syozi and H. Nekano, Progr. Theor. Phys. 13, 69 (1955).

1] L. D. Landau and E, M. Lifshitz, Statlstlcheskaya Fizika, 1964 [Statistical Physics,
Addison-Wesley, 1958].
B. Kaufman and L. Onsager, Phys. Rev. 76, 12kl (1949).

1
] C. N. Yang, Phys. Rev. 85, 808 (1952).
] M, Fisher, Physica 25, 521 (1959).

A\ = w

(
(
[
[

POSSIBILITY OF OBSERVING ZERO SOUND IN NUCLEI BY RADIATIVE PION CAPTURE

A. T. Akhiezer and I. A. Akhiezer

Khar'kov State University

Submitted 7 May 1968

ZhETF Pis. Red. 8, No. 1, 42 - 45 (5 July 1968)

It is well known [1, 2] that there are four possible types of volume collective exci-
tations of nulcear matter (NM), which can be regarded, in accord with the Landau theory of
the Fermi liquid, as different types of zero sound in NM: density waves, spin waves, isospin
waves, and coupled spin-isospin waves (henceforth denoted by the indices 0, s, i, and si).
In this paper we determine the information that can be obtained concerning these execitations
by investigating the interaction between slow pions and nuclei,

The exceptional properties of slow pions (with energy up to several MeV) are connected
with their small scattering length compared with the radius of action of the nucleasr forces
and with the aversge distance between the nuclecns of the nucleus (Ericson [3]), as a result
of which the interaction between a slow pion and a nucleus can be described (Just like the
interaction between a slow neutron and s molecule or a crystal) with the aid of a sum of
Fermi pseudopotentials. If we confine ourselves to a consideration of the interaction in the
s-state, then the effective Hamiltonians of the 7 -meson radiastive capture and of the scat-
tering of the pion by the nucleus are [Y4, 5]

H() = 4frl§Aor (cae)a(r - 1e), (1)
H) = 4n 3B, + B 7,78 € - 1p), (2)
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