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On the possibility of magnetic flux detection by Andreev quantum dot
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The charge of subgap state in Andreev quantum dot (AQD) inserted into the superconducting loop is very
sensitive to the magnetic flux threading the loop. We studied the sensitivity as a function of AQD parameters
in details in A — oo limit. We also accounted for a weak Coulomb interaction in AQD. We discuss a possibility
of using this setup as a device detecting week magnetic field.

PACS: 73.21.La, 74.45.+c, 07.55.Ge

1. Introduction. Josephson effect [1] has been in-
tensively studying last 45 years. In this effect between
two bulk superconductors separated by normal mate-
rial appear a non-dissipative current, which depends
on the superconducting phase difference . Recently
a new development concerning Josephson junctions has
appeared: a charge of normal part between two super-
conductors also depends on superconducting phase dif-
ference [2, 3]. This dependence is strong enough [2] and
one may think about using this effect in a magnetic flux
measuring device, although our estimation gives sensi-
tivity somewhat below the sensitivity of the best by su-
perconducting quantum interference devices (SQUIDs)
(see below for more detailed discussions).

Usually small magnetic fields are measured
SQUIDs [4, 5]. While SQUIDs are based on Joseph-
son current dependence on superconducting phase
difference ¢ (and hence on the magnetic flux &), we
propose to use Andreev quantum dot charge depen-
dence on . Andreev quantum dot (AQD) is a quantum
dot inserted between superconducting banks with the
superconducting gap A. As shown in [2], the charge @
of single-channel AQD can be fractional —|e| < @ < |e]
and depends on ¢. Here e = —|e| is the charge of one
electron.

The charge of AQD can be measured by a sen-
sitive charge detector, e.g. single-electron transistor
(SET). The best SETs have sensitivity of the order
107% le|/V/Hz (e.g. see [6]). Using results of [2] one
can make simple estimations and obtain that AQD can
convert change of the flux §® to the change in charge 6@
with the ratio 6Q/6® = 2|e|/®o, where ®¢ = 2771/2|e]
is the superconducting flux. Assuming that supercon-
ducting loop area is about 1 mm?, we obtain the sensi-
tivity 10~'4 T/v/Hz which is comparable with the best
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SQUIDs sensitivity 1014 + 10~ T/v/Hz [4, 5]. Below
we study in details the ratio §Q)/§® (which we called
sensitivity).

2. Setup. The main part of the setup is Andreev
quantum dot inserted into superconducting loop (Fig.1).
AQD is supposed to be quasi-one dimensional normal
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flux @

voltage Ve
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Fig.1. Andreev quantum dot inserted into the supercon-
ducting loop. AQD is connected to the single electron tran-
sistor (SET) and gate electrode through capacitive cou-
pling. The flux ® produces phase difference p = 27®/®,
at AQD. The charge of AQD can be tuned by V; and &

metal (N) separated from superconductors (S) by a nor-
mal scatterers (I). The position of the normal resonance
in this SINIS system can be tuned by the gate voltage
Ve applied to the normal region of AQD. The magnetic
flux threading the loop ® induces superconducting phase
drop at AQD ¢. Since the phase drop in the bulk su-
perconductor is negligible comparing to the phase drop
at AQD one may put ¢ = 27%/®,.

The single-electron transistor is connected to the
normal region of AQD through capacitive coupling.
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Experimentally such AQDs have recently been fabri-
cated by coupling carbon nanotubes to superconducting
banks [7-10].

Now let us concentrate on the properties of the key
element in the setup — AQD.

3. Energy and charge of AQD without
Coulomb interaction. The Andreev states give rise
to new opportunities for tunable Josephson devices,
e.g., the Josephson transistor [11, 12]; here, we are
interested in their charge properties. We will consider
the case of one transverse channel. In this case the
problem effectively became one dimensional. We
consider case of a large separation Jy of resonances in
the associated NININ problem (where superconductors
S are replaced by normal metal N), dy > A, such that
a single Andreev level €, is trapped within the gap
region. We are interested in sufficiently well isolated
dot with a small width I'y of the associated NININ
resonance, I'y < A. In this section, we completely
neglect charging effects E; = 0. In summary, our device
operates with energy scales I'y € A < 0.

The resonances in the NININ setup derive from the
eigenvalue problem Ho¥ = E¥ with Ho = —h%82/2m +
+ U(z) — er and the potential U(z) = Ups,1(x + L/2) +
+Ups,2(x—L/2)]+eVz0(L/2—|z|)] describing two point-
scatterers (with transmission and reflection amplitudes
Tll/zexz, Rll/zexlr; R, =1-T;,1=1,2) and the effect
of the gate potential V;, which we assume to be small as
compared to the particle’s energy E (measured from the
band bottom in the leads), eV; < E. Resonances then
appear at energies E, = er(nm — x7/2 — x5/2)?; they
are separated by oy = (Ept1 — En-1)/2 =~ 2E,/n and
are characterized by the width I'y = T'6y/ v R, where
er = h?/2mL?. The bias Vg shifts the resonances by
eVg; we denote the position of the n-th resonance rela-
tive to er by ex = E, + eVg — €5.

We go from a normal- to an Andreev dot by replacing
the normal leads with superconducting ones. In order to
include Andreev scattering in the SINIS setup we have
to solve the Bogoliubov-de Gennes equations (we choose
states with £, > 0)

Ho(z) A(z) ul| u
l M@ ) ] H o H v

with the pairing potential A(z)=A[0(—z—L/2)e~ /2 +
+ 0(z — L/2)e**/?]; u(zx) and v(z) are the electron- and
hole-like components of the wave function. The discrete
states trapped below the gap derive from the quantiza-
tion condition (in Andreev approximation)

(R1 + R2) cos 27r(5,).—A — 4v/R1 R, sin® a cos 27r§—N +
N N

+T1T5 cosp = cos (2a—27r§—A) +Ri1R> cos (2a+27r§—A) .
N N

The phase a = arccos(e,/A) is a phase acquiring at
ideal NS boundary due to Andreev reflection with ¢ = 0.
This formula can be directly obtained by using results
of [12, 13].

We will consider the region Iy, |ex| < A, so-called
A — oo limit. With this strong inequality the quan-
tization condition can be expanded and we obtain the
following analytical expression

€x = V% + €2, (2)

T'x 5 P |Ty — Ta|
o~ Fig2 gA=121 -2
er = 1/ cos 5 +4% Wawip (3)

Andreev energy is phase sensitive when |ex| < I'y. In
A — oo limit both u(z) and v(z) parts of wave function
are nonzero only in the normal region

where

0, |z| > L/2,
u(iL‘) — C—>eikez + C(—efikez
v(m e N y |Il7| < L/2,

C}(l—e'ik},z + Ch—)e—ikhz

where ko, = [2m(er £ €4)]'/? /R is the wave vectors of
electrons and holes respectively. The coefficients are de-
fined by C3}, = C&j, = [(1 £ en/ea)/2L)/2

The ground state of the system is the state |0) with
energy €9 = Up (counted from the Fermi energy ¢x) and
without excited Bogolubov quasiparticles. The first ex-
cited state with one Bogolubov quasiparticle is doubly
degenerated in spin |14) = &HO), 1,) = &I|O) and has
energy €1 = Up +€,. The doubly excited state with two
quasiparticles |2) = d}&:”o) has energy ez = Up + 2¢,.
The ground state energy can be expressed in terms of
Andreev energy

UO = €ENn — €a- (4)

Here we omitted the term related to the contribution
from the normal electrons below the Fermi surface which
are not involved into the forming of the superconductiv-
ity; this term does not depend on ¢.

The charge of the state |v) (v=0, 13, 1,, 2)
can be obtained by differentiation of the corre-
sponding energy &, with respect to the gate voltage
qy=0¢e,/0Vy; or by the averaging charge opera-
tor Q=eY, ffﬁz V! ()8, (2)de

over the state
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v), @=(|Qlv). Here ¥ (z)=3,[un(2)ino +
+ signo v;(w)&i,ﬂ,]; the sum is over all resonances.

Both methods naturally give the same results

qoze(l—s—N),q1=e, q2=e(1+E—N). (5)
€a €a

The only non-zero non-diagonal matrix element of the
operator Q is goz, goz = (0|Q|2) = e(1 — €2 /e2)V/2.

4. AQD with Coulomb interaction. In order to
find the effect of week Coulomb interaction E, <« A
at the limit T'y, |ex] < A we can disregard continuous
states with the energies above the superconductive gap
A and suppose that four levels of discrete spectrum form
the whole basis of Hilbert space of the system. In four
states basis we can make exact diagonalization of the
Hamiltonian. The interaction is given by the operator
Qz

V= Ece—z.

The non-zero matrix elements of the operator V are

Voo = Ec(gs + g32)/€*, Vi1 = Eq,
Vaz = Eo(g5 + a32)/€®, Vo2 = 2Ecqo2/e.

The energy levels are defined by the compatibility con-
dition of the following system

éo—E Voo D,
Zir— E Dus| _,
gy —E Dy, ’

Vao E2—E || D,

where &, =€, +V,,,, v =0, 14, 1;, 2. The energy of the
level with one Bogolubov quasiparticle |1) shifts to the
constant

Ei =ex+ Eq, (6)

does not mix with the other states, and degeneracy due
to spin remains. This state is named Kramers doublet.
The ground |0) and doubly excited |2) states mix due to
Coulomb interaction and produce two new states, sin-
glets |—) and |+); |[£) = DF|0) + DF|2). The energies
of these new states are

Ei =en +2E; + +/(ex + 2E:)? + €2. (7)

The energies of the doublet and singlet states de-
pends on gy and ¢ in a different way and may cross;
thus ground state can be formed by singlet |—) or by
doublet |1); the state |+) always remains the second ex-
cited state, see Fig.2. When E. < &; the ground state
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Fig.2. Energies E_ (solid line), E; (dashed line), and E
(dotted line) versus position of normal resonance. All ener-
gies are in units of er (3). The Coulomb energy is Ec =0
for (a), Ec = er for (b), Ec = 2er for (¢), and Ec = 3er
for (d). The doublet region appears when Ec > er, see
(b-d). In the filled region the ground state of the system
is doublet; the width of this region is 2(E2 — 612-)1/ 2 edges
of this region spreads due to finite temperature ©

is singlet |—), elsewhere the ground state is doublet |1)
in region

—2E;—E2 —¢e2 <ex< —-2E.++/E%2—¢2 (8)

and remains |—) at all the other values of ey [14]. At the
edge of the region (8) singlet—doublet phase transition
happens, with jump in the charge (see below).

The charges of the new states |u), (1 = 1, £) can
be calculated as in previous section Q, = 0E,/0Vj, it
gives

ex + 2E¢
V(ex +2E)2 + ¢

Everywhere except doublet region the ground state
charge equals to _, in doublet region the charge is
pinned to the value )1 = e. As one can see from the
Fig.3a,b for E; > E¥ = I'yvA/2 phase transition occur
and the charge jumps to the value 6Qps = Q@ — Q1. At
finite temperature this jump is smeared, see Fig.3c,d.
The equilibrium charge with finite temperature 0 is

Q_e—E_/@ +2Q16_E1/® +Q+C_E+/®
Qeq - e*E_/e + 267E1/® _+_ e*E.'./@ )

Qu=e(12 ;) =

(10)

here and below we set Boltzmann’s constant ks = 1.

5. Differential sensitivity. The differential sensi-
tivity of equilibrium charge to the magnetic flux thread-
ing superconductive loop we defined as the absolute value
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Fig.3. Equilibrium charge Q.q (10) versus superconducting
phase difference . At the figures (a) and (b) temperature
is zero (i.e. Qeq represents ground state charge), at (c)
and (d) temperature is ® = 0.1E¢, where Ef = 'nvA/2.
The Coulomb energy is Ec = 1.2E{ for (a) and (c),
Ec = 2.0E¢ for (b) and (d). The asymmetry level of
the dot is A = 0.2. The features at the centers of the plots
corresponds to the doublet region (8). At (c) and (d) the
border of doublet region is smoothed by temperature ©.
The curves differ by ex +2E¢ values (from below, in units
E%): 2.0, 1.5, 1.0, 0.5, 0, —0.5, —1.0, —1.5, —2.0

of derivative 0Qeq/O0® taken at the given value of mag-
netic flux?), S = [0Qcq/0®| . By using (10) we obtain

_ o0Q OFg
S = |Fg 5% + 5% | (11)
where @ = (Q+ — @-)/2, the derivative
2 .-

=e
09 P 16[(6N+2Ec)2+6%:|3/2

2)Note that the sensitivity of charge-to-ux convertor S =
= Ss_q coincides with the voltage-to-current sensitivity of
Josephson transistor that is described in [12] Sy = |8J/dVy|.

and function
e F+/© _ o—E-/©

Fo= w76 + 2~ F1/© 4 e~ E4/0°

(13)

As one can see form the Fig.3 there are two inter-
vals, where Qq(p) dependence is steep. As ¢ increases
from ¢ = 0 the charge increases (decreases) and reaches
maximum (minimum). Until B, < E} the maximum
(minimum) of charge is always at ¢ = 7. At Eq > E}
the extremum splits and in between two extremums sec-
ond interval with steep dependence emerges. The first
interval (interval I in what follows) corresponds to the
singlet state of the AQD, the second (interval II in what
follows) to the doublet state. We start with describ-
ing of the first interval. We fix parameters I'y, A4,
and E. and search for the maximum of sensitivity S
as a function of ey and ¢. The non-trivial symmetries
Qeq(p) ex) = Qeq(2m— ¢, €x), Qeq(p, ex) — Qeq(p, 0) =
= —Qeq(p, —&x —4E;) + Qeq(yp, 0) allow us to restrict
search region to 0 < ¢ < 7, ex + 2E; > 0. Then we
analyze the maximum of S as a function of E. keeping
A and I'y constants.

Interval I In the case E < [3(1+A42)/(1+242%))'/2E?,
and zero temperature ® = 0 the function Fg = 1
and the sensitivity is totally defined by the deriva-
tive 0Q/0% (12). The function |0Q/0®| has a max-
imum at ex + 2E; = EX[(1 + A%)/(1 + 24%)]*/? and
¢ = — 2arcsin[A/(1 + 242)'/2], it equals

s — |e|2_7r;

e 0 6v3A4v1+ A%

One can see that the smaller A the bigger sensitivity.

In other words more symmetric SINIS structure pro-

vides better sensitivity. When © < E}, the sensitivity
is nearly independent on temperature.

In the opposite case E > [3(1+A42)/(1+242%))'/2E?
the doublet region absorbs maximum (14) and maximal
value of sensitivity is always at the outer edge of the
region (8). It gives maximum

(14)

2r  T¥ 9
P 481/3E3

X /208 = A+ 132 - A+ (A= 2)(2A - 1) (15)

Smax = le]

max

at ey + 2B; = (Tw/2){[2A — 1 + (A2 — XA +1)1/2]/3}1/2
and ¢ = 2arccos{[A+ 1 — (A2 — A +1)%/2]/3}'/2 where
A = (E2 — EX?)/(Tx/2)%. In the limit E, > Ty, E}
formula (15) reduces to

2r T2

SrInax ~ |6|—

3, 162

(16)
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and maximum reaches at ey +2E; ~ E; —I'%/16E and
p~m/2+T2/16E2.

Interval II. At zero temperature there is a jump in
the charge at the edges of interval II, and thus the sensi-
tivity diverges at this points. Finite temperature smears
the jump and the sensitivity becomes finite. In the case
E; > 0, I'y, EY the maximum of the sensitivity again
located near point ey + 2E; = Eg, ¢ = 7/2 and can be
estimated as

2r T2

1 R
Stmax % le] 3, 64E,0"

(17)

At arbitrary E. the expression for S _ is not solvable
by quadratures. We plot the dependence S _(E.) nu-

max
merically at Fig.4. At the same plot we present also

<
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N
=
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Fig.4. Maximum of the differential sensitivity in the in-
terval I Sh.,. (dashed lines) and in the interval II S&,.
(solid lines) versus Coulomb energy Ec. The asymmetry
level is A = 0.2, correspondent critical Coulomb energy is
E¢/T'x = 0.1. The temperature varies from © = 0.2E¢ up
to ©® = 0.6E{, see insert in the plot

the maximum of the sensitivity from the interval I. One
can see that at big Coulomb interaction the region of
the smeared phase transition always provides sharper
Qeq(p) dependence.

In realistic nanodevices Coulomb energy can be
smaller than I'y (see discussion in [7, 2]), but one also
can make it bigger than I'y, e.g. increasing Fermi energy
in the quasi-one dimensional normal region.

6. Conclusion. In this article we pointed out that
the -dependence of AQD charge in principal may be
used for new type of magnetometers which works ac-
cording to the scheme “magnetic lux-AQD charge—
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SET—current” instead of usual SQUIDs scheme “mag-
netic flux—current”. We analyzed charge sensitivity as a
function of magnetic flux, gate voltage, Coulomb inter-
action, asymmetry of the dot, and temperature.

The sensitivity of our setup can be further increased
by adding electromechanical element [15]. If one apply
big electric field to the charged nanowire, the change in
the charge will lead to the mechanical shift of the wire.
This shift can be then detected due to the change of the
capacitance of the whole setup as in [15].

We concentrated here on strictly 1-channel wire to
demonstrate the effect. The case of m-channel wire
(n = 2 or n > 2) can be analyzed in the same tech-
nique and we plan consider it nearest time.
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