times, Thus, inasmuch as the frequency of the local oscillation of the U centers is LiF =

1

1015 em —, our band at 2100 cm._l must be ascribed to Ul centers.

The authors are grateful to Academician E, L. Andronikashvili for stimulating interest

in the work.
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In 1960, M. Khaikin observed an oscillatory dependence of the surface impedance of
metals in weak magnetic fields (1 - 10 Oe) [1]. Subsequently Nee and Prange [2] explained
this phenomenon as being the result of transitions under the influence of a high frequency
field between discrete surface levels of electrons moving near the surface of the metal, Under
the influence of the magnetic field, the electrons whose orbit centers are outside the metal,
are reflected many times from the surface and drift along the surface. The motion of these
electrons in a direction perpendicular to the interface is finite and periodic, and therefore
can be quantized. Such quantum states have been named magnetic surface states. The impedance
oscillations in a weak field actually represent cyclotron resonance on magnetic surface
levels., The usual cyclotron resonance [3] due to transitions between Landau levels of volume
electrons occurs in a strong magnetic field at frequencies that are multiples of the cyclotron
frequency §l. ©Since the frequency of transition between surface levels is larger by 2 - 3
orders of magnitude than the cyclotron frequency [2, 4], resonant Khaikin oscillations were
observed in weak fields. It must be noted that this phenomenon, as any resonant effect, is a
collective phenomenon.

On the other hand, it was established in recent years that collective oscillations —-
weakly damped electromagnetic waves -~ exist in the vicinity of resonant effects of various
types. lLixamples are cyclotron waves [5, 6] near cyclotron rescnances, spin waves in alkali
metals near paramagnetic resonance [7, 8], quantum waves in the vicinity of giant quantum
oscillations of Landau damping [9, 10], etc. Starting from this, it can be assumed that
electronic waves should also exist near resonances on magnetic surface levels. Since the con-
sidered quantum states are localized near the surface of the metal, the waves corresponding to
them should also be surface waves. We present in this paper the results of a theoretical in-
vestigation of this question, and show that such waves actually should exist in pure metals

with sufficiently large electron mean free paths R.
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Assume that a metal is placed in a constant and homogeneous magnetic field i parallel
to its surface. We direct the Oz axis along the vector ﬁ and the Ox along the inward normal
to the interface. We seek a surface H-wave with polarization Ex = Ez = 0 and Ey = B(x)exp
(ik z - iwt] when x > O and E, = E(0)exp {[ki - («»2/<:2)]l/2
determine E(x) inside the metal, it is necessary to solve Maxwell's equation, which we write

for the Fourier transform & (k) = 2f:E(x)cos(kx)dx:

x + ikzz - iwt} in vacuum. To

(k24 k2) & (K) + 267(0) = Amiwe j(k, k). (1)

The prime denotes here differentiation with respect to x, and j(k, kz) is the Fourier
transform of the y component of the current density. From the condition for the continuity of
the z component of the alternating magnetic field it follows that E'(0) = [ki - (me/cz)]l/2 ]
E(0), where E(0) = 1/n f: £ (k) dx.

In Eq. (1) it is necessary to know the current demsity j(k, kz). For simplicity, we
present the scheme and the result of the calculations for an idealized model of a metal,
vhose Fermi surface is a circular cylinder with axis parellel to the magnetic field. The
generalization to the case of a complicated dispersion lew, and also the derivation and a
detailed discussion of the results, will be published in a more detailed communication. 1In
the model under consideration, the current density j(k) does not depend on kz, since the
electron velocity along i is equal to zero. We shall assume that the scattering of the re-
sonant electrons by the surface of the metal is specular, since their glancing angle ¢ is
small [4]. From physical considerations (which are confirmed by an exact calculation) it is
quite obvious that only electrons glancing along the surface take part in the resonance,
whereas the skin layer is formed by the volume (nonresonant) electrons., The current density
is therefore represented in the form of a sum of two terms: J(k) = Jo(k) + Js(k). The first
term describes the current of the volume electrons, and is independent of i in the considered
wesk-field case. This conclusion is valid if (<SR)l/'a >> v/w, where (GR)l/2 is the
characteristic path of the electron in the skin layer 8§, R is the electron radius, v/w is the
effective free path in an alternating electromagnetic field, and v is the Fermi velocity.

The current density of the glancing electrons Js should be calculated with allowance for the
quantization of the surface states. In the quasiclassical approximation, the final asymp-

totic expression for the current density is

mia(k) mt

io(k) = —EE;Z;—__‘; ig(k)=i -

e, iV, P

7 dk& (K) g, , (k) (k)
’ (2)

1
¥, (k) = [dxcos (msx)cos [ kp (1 - x?)1.

Here wg is the plasma frequency, p is the Fermi momentum, v is the electron collision fre-
quency, s = n' - n is the difference of the magnetic quantum numbers in the final (n') and
initial (n) states, w = nsQ/¢nis the resonant frequency, ¢ = {31r‘l‘1§2/mv2 [n - (l/h)]}l/3 is
the quantized value of the glancing angle, P = (1/2) R¢§ is the maximum distance of the n-th

quantum trajectory from the surface of the metal, and m is the effective mass of the electron.
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In the expression for ,j (k) we retained only one resonant term. The ratio [J /jol at the
maximum is of the order of hk v/pv, and should be much larger than unity in order for a
spectrum of surface waves to exist. Assuming that k v 1/6 and fi/p ~ a (a is of the order of

the electron wavelength, we write this inequality in the form

ad/52>5 1, L=v/v.

Using (1) and (2), we can obtain and solve the dispersion equation for the surface
electromagnetic waves. We write the solution of this equation in the long-wave limit, when

the length of the surface wave is large compared with the skin-layer thickness § =

(c v/2ww2)l/3, and is small compared with the wavelength in vacuum, i.e., w/c << k<< 1/8:
where @=e,.(1-88, +B“iskx)""r

B=ttwd’m, a, =2/nf ky (k)dk/(k3- is-3))

Bos = 2/n kg, (k)dk/(h3_ i5-3)

The parameters %s and B coincide in order of magnitude with the thickness of the skin
layer (when L 8), Formula (h) determines the spectrum of the surface wave only at small
values of kz. The limiting frequency of the surface wave in this region of kz differs from
Wi by an amount Ban Wogt which by virtue of the condition (3) is much larger than the
damping of the wave v. An analysis shows that the limiting frequency of the surface wave in
the region kzd >> 1 coincides with the transition frequency Wog Thus, the spectrum of the
surface wa.ves is localized near the resonant frequencies w__ and has a relative width

BBn '\:'ﬁ/mﬁ w, which when 6 ~ 10~ = om and w v 1011 ¢t reaches about 10% of the resonant
frequency itself., Of course, to observe surface waves 1t is necessary that the demping of
the wave be small compared with the width of the spectrum - in accordance with the condition
(3).

Apparently the most convenient way of experimentally observing such surface electro-
magnetic waves in metals is to use their resonant excitation with the aid of surface hyper-
sonic Rayleigh waves., The excitation will be most effective if the frequency and wave
numbers of both surface oscillations coincide,
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A number of investigations (see, for example, [1] have been devoted to the reflection
of light from the surface of a metal with emission of the second harmonic, excited by a
current 3 which is nonlinearly (quadratically) connected with the fields E and i (for iso-

tropic‘media with an inversion center)
j=oE +alEH] + BEdIivE . (1)

It is shown in {1] that in the optical band both the conduction electrons and the bound
electrons contribute to the nonlinear constants o and 8. On the other hand, the nonlinear
properties of metals have been traditionally investigated in galvanomagnetic experiments. The
nonlinear connection between the current and sufficiently weak fields is usually written in
the form [2]

El =P ', + €iik II kaHm"'p”"'"il HmHn (2)

(here €5 3k is a unit antisymmetrical tensor). The second term of (2) describes the Hall
effect. In the case of alternating fields, second harmonic generation and the detection
effect are connected with this term, The third term is connected with the magnetoresistance.
It is of interest to investigate the nonlinear properties of a metal in the microwave band.
Unlike the optical band, the principal role is played here by the free carriers, and further-
more the last term in (1) is negligible. Unlike the static case, temporal and spatial dis-
persion can play a role here.

We have investigated experimentally second~harmonic generation in bismuth in the
microwave band., Bismuth was chosen because its carrier density is low; this leads to a
larger Hall constant than in other metals and to a better penetration of the field into the
metal,

The experiment was performed at room temperature. A bismuth single crystal grown by
the method described in [3] was placed at the bottom of a two-mode copper resonator. The
resonator was excited in the EOlO mode by a powergul microwave generator (10 kW) at a fre-
quency of 9200 MHz., The use of short pulses (10 sec) prevents heating of the sample. The

resonator dimensions were chosen such that the Hll mode had the second-harmonic frequency,

1
i.e., 18400 MHz. The bismuth crystal in the form of a disc {diameter 17.8 mm) with mirror-
finished flat surfaces was secured to the resonator with a conducting adhesive,

Let us consider the nonlinear current given by (2):

i=[EaH) (3)

For bismuth, if Xl and X3 are the binary and trigonal axes, respectively,
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