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It is well known at present that in a magnetic field H parallel to the surface of & metal
there exist, besides the volume Landau levels, also surface magnetic levels (SML). They
were first observed by Khaikin [l], who investigated the oscillations of surface impedance,
The nature of these oscillations remained unexplained until the publication of the paper
by Wee and Prange [2], in spite of the fact that I. Lifshitz and Kosevich [3] investigated the
quantization due to the presence of the metal boundary even earlier, in connection with the
de Haas ~ van Alphen effect.

The present paper is devoted to the contribution of SML to the thermodynamic properties.
For simplicity, we consider a metal occupying the half-space x > 0, choose the z axis along
the magnetic field, and assume the electron spectrum to be
quadratic and isotropic. The SML are characterized by the
following quantum numbers: the number n =1, 2, ..., the
tangential projection of the electron momentum {py, pz},

and the spin quantum number o = 1/2, The dependence of

Eno(py’ pz) on p is shown in the figure. When p_ <

y
-(2me(s) - pi)l/e, the distance from the surface to the

center of the classical orbit exceeds the Larmor radius
R, the electron does not collide with the surface, and the

SML have an exponentially small deviation (with respect

to py) from the Lendau levels. The region |py[ < (2me(s)

- pi)l/2 corresponds to orbited that intersect the surface,

(s) _ pi)l/2 the entire orbit is located

outside the metal and there are no SML. A feature of the

and when py > (2me

L P e e e s e s e . . e . ——— . T T T . T S S .

spectrum is that all the levels with numbers n < eF/ﬁQ, 3 7

where Q = el/mc (the electron charge is e) intersect the 5
‘ ectrum of surfac i
Fermi level e_. Because of this, the contribution M(s) P e magnetic.

F levels ¢(*) (py,p,). | =(ef*) -
of the SML to the magnetic moment exceeds, under certain - p‘:’ /2,,,)’.'}77,9' t =p (2mels)-p2)12
y z" !
conditions, the usual magnetism M(V) of the conduction o=1tl/2
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electirons.
We begin the calculation with the density of states dz/de. It is shown in [4] that the
density of states can be broken up into two parts, one proportional to the volume and connect-

ed with the Landau levels, and the other proportional to the surface area S and equal to the

SML density

dz/de - ——|3 rdp,dp,[su-dﬂ)-5'—5(«-4”)1 -

(2"’5 )2 no ) (1)

1 A ,
— —— fdp dp_~——1nD (0},
Timzfe,do, —lnly 1L g¢
where 2

p2 p? !
¢=2p, (206 ) 12 L (e- 2 ) /b0, oY) - 22 L HQMn-m1 o)
2m 2m 2
The SML are determined by the solution of the equations

Df-%+a(<) =0 (2)

D is the parsbolic-cylinder function. We denote these solutions by 1n o(z), change over in
(1) to the variables % and ¢, and integrate with respecf to £ with the aid of §-functions and
with respect to § by parts. We then obtain the following result for the number of states
with energy lower than €:

I > 1) (_[_)'/Zdl- I—Imed(dc\/ejillnD , (3)
7.

2nh [non-_zl__+a e-€ w o

Z(e) = 3 i)

where € = £/f, t_ (%) is the solution of ¥q. (2), in which ¢ = 24172

, and the summation

is over those n for which the lower limit in the integral is smaller than the upper limit. If
€ €y >> NQ, then the principal role in (3) is played by the first expression, and it is nec-
essary to take into account many terms in the sum over n, so that a quasiclassical repre-
sentation of the SML spectrum can be used., We present an expression for the magnetic-field-
dependent increment to the number of states

S m)

g (iv)? j‘(—(_)'/zdt}d: oxpl 2mi viby (1) + -1, ()

73 oo Lapy } =1 4

Z{e) =

where
2 ] 2
p(t) == fdt (1 -1, )12
L
there is no term with v = 0, as is designated by the primed summation sign. When € >> 1, the
integral depends mainly on the region 1 -~ t << 1 and on the values % ~ €,

Omitting the oscillating terms (which is of no interest because it has the same period

in H-l 8s the de Haas - van Alphen term in the density of the volume states), we get
SmQ €
Z(e) = —————(—) V3 A;
h HQ

3176 1(5/6) 1
] s ,-5/3 sin,,(%’.. + ;_) = 0,08 102, (5)

21/343/212(1/3) v=1
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With the aid of (5) we obtain the contribution of the SML to the magnetic moment

eﬁ Sm (4/3
MeE) = £ A
me K2 (h@) 173 (6)

and the field-dependent heat capacity

) I, (1)
H #2 - 9
Formula (6) coincides, apart from a coefficient and the sign (paramagnetism), with the
results of Steele [5] and Dingle [6], obtained in the quasiclassical approximation even prior
to the work on the SML [2]. Doubts concerning the validity of [5] and [6] were expressed in
[7] and [8]. In [7], the influence of the magnetic field on the spectrum was taken into
account by perturbation theory, and the singularity was lost (near the end point of the

spectrum, i.e., at t = 1)

(s) 37 ' 2/ Py s
tny = (P2+ p2)2m +[—2—-(n-4—-)ﬁﬂ] 3‘(2m )1/3 4 hQo. (8)

In [8], the metal boundary was simulated by a parsbolic potential of certain frequency Wy
the smallness of the field H was understood in the sense of Q << Wys end the usual Landau ex—
pression was obtained for the susceptibility.

Let us discuss the influence of: 1) the finite ‘dimension of the metal in the x direct-
ion denoting the corresponding‘dimension by Lx: 2) the non-ideal character of the surface, and
3) the collisions of the electrons with the volume defects (impurities)l).

1. Exbression (5) is determined by the glancing electrons (relative to the surface),
whose wavelength in the x direction is

A, (SE_y1/3
0

h

Pr
(see [8])., In order for (6) and (7) to be valid we must have Lx >> Ax. We emphasize that

L_must be compared with A , and not with R, as was done in [7] and [8]. The foregoing in-

) (5) ()

equality limits M(S vhen H + O. However, the maximum value of M with respect to

Lx turns out to be larger

1 €
M(s) 7 yv) ‘F_14/3 E_.
( / )mmt (‘hQ ) (L )max +Q

x

2. Surface roughness leads to damping of the MSL. Depending on the ratio between the
size of the roughness a, the dimension of the smooth sections of the surface d, and the
wavelenth Ax’ the requirement that the surface have good specular properties takes on dif-
ferent forms [L]: 0

(app)2Q/e(fip cd) 172 <<l if (—)2/3p_d/hi <<1,
€
F
Q L1t
(qu)z(—-—‘ )47/3/62/3 << if (—)23pd/t>> 1.
F ‘F

1)

One more limitation is connected with dM/dB = hn—l. This remark is due to I. A.

Privorotskii [9].
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3. Collisions with impurities do not change (6) or (7) if A << &, where £ = 1v_ is

the mean free path in the x direction, i.e., if

(hQ/e.) 2/3 ¢ >>H/r. (9)

The meaning of condition (9) is that the distance between the MSL should be large compared

with the damping h/t. The condition (9), which is the most stringent of all the foregoing,
(s)

is nevertheless satisfied for fields 0.1 =10 Oe (it is meaningful to measure M in this

interval at a range L; = 1 - 0.1 mm) .
I take the opportunity to thank I, M., Lifshitz for a discussion and M. S. Khaikin for
suggesting this problenm.

(1] M. s. Khaikin, Zh. Eksp. Teor. Fiz. 39, 212 (1960) [Sov. Phys.-JETP 12, 152 (1961)].

[2] T. W. Nee and R. E. Prange, Phys. Rev. Lett. 254, 582 (1967).

[3] 1. M, Lifshitz and A, M. Kosevich, Zh. Eksp. Teor. Fiz. 29, Th3 (1955) [Sov. Phys.-JETP
2, 646 (1956)1.

L. A. Fal'kovskii, ibid. 48, No. 5 (1970)[31, No. 5 (1970)1.

M, C. Steele, Phys. Rev. 83, 451 (1952)

R. B, Dingle, Proc. Roy. Soc. 4219, 463 (1953).

L. Friedman, Phys. Rev. 13hA, 336 (196k4).

D. Childers and P, Pincus, P} Phys. Rev. 17T, 1036 (1969). _

I. A. Privorotskii, Zh. Eksp. Teor. Fiz. 52, 1755 (1967)[Sov. Phys.-JETP 25, 1167 (1967)]1.

—_ e — —
\O o~ O\t
et e et b S 8

FILM SUPERCONDUCTIVITY STIMULATED BY A HIGH-FREQUENCY FIELD

G. M, Eliashberg

L. D. Landau Institute of Theoretical Physics, USSR Academy of Sciences
Submitted 7 January 1970

ZhETF Pis. Red. 11, No., 3, 186 - 188 (5 February 1970)

A number of problems pertaining to nonlinear electrodynamics of small-size superconduc-
tors have been considered recently [1, 2]. 1In each case the result was that an alternating
electromagnetic field, by decreasing the ordering parameter A, exerted a destructive action
on the superconducting properties, just as in the case of constant magnetic field or current.

Yet, as will be shown here, such a situation obtains only for field frquencies below
a certain critical value Wy and when w > W, the high-frequency field should increase A.

To illustrate the physical nature of this phenomenon, let us turn to the principal
equation of the BCS theory [3]

A-:? de -
’ A ‘2 -Az

~(1 - 2n(d)), (1)

which determines the dependence of the energy gap A on the distribution function n{e). At
equilibrium we have n(e) = (eE/T + l)-l. An alternating field of frequency w < 2A/h, when
absorbed by the excitations, will shift the "center of gravity" of n{e) towards larger values
of €, keeping the total number of excitations constant. Such a shift of n, as seen from (1),
will lead to an increase of 4, owing to the decrease of the level density with increasing
distance from the threshold, The actual change of n(e) will be proportional to the field

intensity E2 (at not too large E) and to the energy relaxation time T of the excitations.
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