Sl emt-Lg? -£%) (6)
o 1o 8
in place of the previous
t
_‘L:_:exp{_AZ(é-o_E)L (68.)
) ro

Thus, the difference in the character of the long epochs in both cases reduces only to
a different connection between the time t and the variable &, governing the oscillations of
the functions (5). If to and tl are the upper and lower time limits of the long epoch, then
8 ln(to/tl) = £§ in the case of (6) and NG ln(to/tl) = £y in the case of (6a). On the other
hand, the value of £y determines the total number of oscillations during the long epoch (equal
to £¢/27). It is clear therefore that at a specified ratio to/tl the number of oscillations
is in genersal smaller in the case of (6) than in the case of (6a).

In connection with the foregoing, we can maeke the following two remarks.

1. The distinguishing feature of the type-IX model, compared with type VIII, is that
when A = u = 1 the difference Aa2 - ub2 in Egs. (1) is small together with the difference
a - b; such a contraction requires not only that the signs of A and p be identical, but also
that these quantities be essentially constant. One can therefore expect, in the most general
case of an inhomogeneous space metric, the character of its time dependence during long
epochs will correspond to (6) and not to (6a). This conclusion is indeed confirmed by an
analytic construction of a general solution for a long epoch, as will be shown elsewhere by
V. A. Belinskii and I. M. Khalatnikov.

2. A homogeneous space of type VIII has an infinite volume, whereas a type-IX space is
closed. Therefore the aggregate of these two examples is evidence of the absence of a direct
connection between the oscillatory approach to the singular point and the openness or closed-
ness of the model.

(1] I. M. Khalatnikov and E. M. Lifshitz, Phys. Rev. Lett. 2L, 76 (1970).
[2] V. A. Belinskii and I. M. Khalatnikov, Zh. Eksp. Teor. Fiz. 56, 1700 (1969) [Sov. Phys.-
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An isotropic-turbulence equation, containing turbulent viscosity, was proposed in [1].
By introducing the turbulent viscosity, various hypotheses regarding the closing of the sys-
tem of equations of isotropic turbulence are replaced by some hypotheses concerning the

structure of the coefficient of turbulent viscosity, defined by

v = k(x?/t). (1)
The quantity k may depend in general on the Reynolds number of the turbulence. This hypothesis
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has a number of theoretical advantages over the formula proposed in [1]:
Vo = k[Bg'(O,t)]l/Zr, (2)

and ensures, in particular, the required behavior of Bgd as r > 0. The value of the coeffi-
cient k in (1) can vary in a wider range than in (2). In this case the principal equation of

isotropic turbulence is written in the form

d 2 d
B, 1 9 r2 989

d =.—__r‘(zv+2k___) R (3)
at r4 or t ar

which is equivalent to the hypothesis that the third moments are written in the form

dd r2 9 4
B, =2k— —B8,. (%)
t A

We note first that formula (4), based on the use of hypothesis (1), ensures satisfaction of

all the requirements that the function de must satisfy in accord with its definition. Thus,

d
this hypothesis not only yields the structure of the viscosity coefficient, but also makes it
possible to regard Eq. (3) as the first equation of an infinite system for the correlation
functions. Equation (3) has a self-similar solution in the form

R 1
Bd(r,r)a t" u(n) ,wheren=rt , B= ——,
d 2

When n = 58, the equation for u(n) can be integrated in final form:

<
u(n) = :,

(1+ k,,Z/V)l/&k

The integral invariant of the isotropic turbulence

°f‘T'B‘;'-(r, t) r4dr = const
(-]

is finite for n = 58 when k < 1/20.

In this case we have n = ~5/2 for B = -1/2, and consequently
d c ] .
‘Bd = .

1572 (14 kn/v)!/8k

By taking the limit as k + O in this formula we obtain the well-known equation obtained in
[2], which holds when only molecular viscosity is in action:
r2

BY . exp (-
d 15/2 8vt

).

If the molecular viscosity is negligibly small compared with the turbulent viscosity,
then Eg. (3), which takes the form
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has a self-similar solution

B:(r,f)=1"u(nh n=r1ﬂ
with arbitrary exponent B.

It follows therefore that in the presence of both types of viscosity, molecular and
turbulent, with the turbulent viscosity predominating, it is advisable to seek an approximate
solution of (3) with an arbitrary exponent B. The exact equation (3) is then replaced by an
approximate one for the "quasi-self-similar" regime. In the latter equation, the term con-

+
taining the molecular viscosity has a time factor t2B 1

1;2£3+l

, which can be replaced by its mean

value s = in the given interval of t.

The approximate equation for the "quasi-self-similar" regime takes the form (for n = 58)

1 d
B.i_(,'su) = — n4T2us + 2kn? 1

dy 7% dn dn

Its solution is

v=cla? + nZ)B/lk a,nd_B: (r, 1) =ct5B(a? + 9 B/ 4k .

where aa = vs/k. This solution is valid of B/2k < -5.

In eccordance with Eq. (4), the formula for the third moments then takes the form

3
~(1+ B)
B (r, 1) = B BY (r)r 1T
d a? +9q
For the normalized function Bgd wve get
B3I (r,1) g BY (r.t) '-(1+-;—B) s)
— d 4
(8Y(0, +)P/2 Ve a?+n?  BJ(0,1)
The case B = ~1/2 (s = 1) corresponds to an exact solution of (3). This solution with an

arbitrary exponent B permits a better description of the experimental data, which deviate
appreciably from self-similarity with respect to the parameter n = r//vt. If 8 # -2/T7, then
the time variation of the minimum of (5) is obtained without the additional assumption that k
depends on the time,

Preliminary data on computer solution of Eq. (3) have shown that sufficiently accurate
results can be obtained with the aid of the "quasi-self-similer" solution.
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