from this system to the laboratory system
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leads to the aforementioned "self-similarity"
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and to the distribution (6).
The 7 spectra obtained with the aid of the "exact" formulas (1) - (4) (for 6, = 0) and
with the sid of the approximate formulas (5) ~ (7) are shown by the solid and dashed lines

in Fig. 2, respectively, where vy = O and A = 0,01, following averaging of (%) and (6) over

mg with a weight function ¢ = ¢2(m2) with a = 1., They are very close to each other and agree
well with the experimental data [1].
1 ‘

The spectra of K~ and p are similarly plotted on Fig. 2. In both cases, good agreement
with experiment is obtained at vy = 0.5 = 0.2 with A = 0 and with a large coefficient a in
Qe(mz). As seen from Fig. 2, the spectra shift regularly with incfeasing el.

Besides Fig. la, contributions are made by the diagrams of Fig. 1d and Fig. le with
several "jets" of particles. Allowance for these contributions leads to a steeper decrease
of the spectra {since these diagrams enrich their parts), and possibly does not disturb the
agreement with experiment, producing only a small change in the parameters, viz., an increse
of A in the case of m and a decrease of y in the cases of K and B.

Vertices of type (2) play an important role in high-energy physics - their variation
and magnitudes determine, particularly, the contribution [3] of branch cuts to the total in-
teraction cross sections.

The authors are grateful to L. B. Okun' and V. V. Anisovich for & number of remarks,
and to Yu. D. Prokoshkin for a discussion and for acquainting them with the data of the ex-

periment [1].
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The purpose of this paper is to call attention to a new effect, nemely that a crystal
can rotate under the influence of a temperature gradient., For example, if a potential
difference is produced on the '‘ends of a long rod with thermally insulated lateral surface,
then the rod will aéquire an angular momentum M directed along its axis and proportional to
the resultant heat flux ¢
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M =Bq.

We call the quantity M the gyrothermal coefficient of the rod.

As shown in [1, 2], the phonon gas that transfers the heat along the long rod rotates
at low temperatures, i.e., its stream lines form helices that wind around the rod axis. The
rotation of the phonons in an ideal crystal does not lead to rotation of the body as a whole.
This is seen, for example, from the fact that in a crystal in which heat flows the tensor
of the momentum flux density is symmetrical [1]. As indicated in [3], at low temperatures
defects and impurities in quantum crystals must be regarded as quasiparticles. If their
atomic concentration is small, then they have little influence on the phonon motion and are
dragged by the phonons, acquiring a drift velocity

'Ip' -l

)

\/

] =vp(l+

Tib

where vi is the phonon drift veloecity, and Tip and Tip BYe the relaxation times of the im-~

purities on the phonons and on the bowndaries. (For :oncreteness, we shall speak of im-
puiities, although the entire reasoning holds also for defects,) The rotating phonons im-
part to the impurities an angular momentum of the order of mivid per impurity atom, where

m, is the impurity mass and 4 is the transverse dimension of the rod. According to the
angular momentum conservation law, the crystal lettice acquires an equal and opposite momen-
tum. The corresponding angular velocity is of the order of cvi/d, where ¢ is the ratio of
the total mass of the impurities to the mass of the entire rod. At sufficiently high temper-

ature gradients v, can approach the speed of sound. ‘Therefore, in spite of the necessary

smallness of c, t;e effect may be large (much larger than the Einstein -- de Haas effect).
The foregoing estimates pertained to the case of very low temperatures, when the uncertainty
in the impurity energy hTi;l is small compared with the width of the impurity band., At higher
temperatures, when the opposite inequality holds, the wave function of the impurity does not
have time to spread out over the band and is localized [3]. The dragging of the impurities
by the phonons is then greatly reduced. Further increase of the temperature mekes the over-
the-barrier trensitions appreciable, so that the diffusion coefficient increases like
exp(-u/T), where u is the height of the barrier. The effect of rotation in this region also
increases., The angular velocity has an order of magnitude cvbd-l exp(-u/T), since only over-
the~barrier particles are dragged. Nonetheless, the effect can be observed also in this
region. Symmetry considerations impose certain limitations on the feasibility of relation
(1). Since M and q transform under rotations like components of a pseudovector and a vector,
respectively, the coefficient B vanishes if there is in the crystal a symmetry plane perpen-
dicular to the rod axis, or if a symmetry plane passes through the axis of the rod and is at
the same time a symmetry plane of its cross section, or finally if the crystal has a symmetry
center and the section also has & central symmetry.

The investigations [1, 2] pertained to the hydrodynamic regime of heat conductiocn,

i.e., to the temperature renge in which the phonon mean free path relative to normal colli-

sions lN compared with d, and Umklapp processeé can be neglected. The cause of the rotation
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is the nonlocal connection between the heat flux and the temperature gradient. The non-
locality, of course, takes place in the collisionless regime, when QN >> d. Thus, the ro-
tation remains at arbitrarily low temperatures. In solid helium samples of the usual size,
rotation should exist at T < 1°K. Unfortunately, we cannot predict accurately the magnitude
of the rotation torque, since the degree of localization of the impurities at these tempera-
tures is not known. Measurements of the gyrothermal effect can cast light on this question.

In conclusion we note that, besides the above-~described gyrothermal effect, there exists
a gjroelectric effect, whereby the flow of electric current through a single-crystal metallic
rod in the collisionless or hydrodynamic regime [2, 4] imparts a torque to the rod. Like the
phonons, the electron gas rotates as it moves along the rod, and as a result of the conser-
vation of the angular momentum the crystal lattice rotates in the opposite direction. It is
probebly more convenient to register this effect not by determining the rotation of the rod,
but by determining the magnetic field directed along the axis of the rod and produced by the
rotating electrons. This field may be appreciable, since a long rod is equivalent to a
solencid with a large number of turns.

1] A. L. Efros, Zh. Eksp. Teor. Fiz. 5h, 1764 (1968) [Sov. Phys.-JETP 2T, gh8 (1968)].
%2} H, Nilsen aﬁd B. I. Shklovskii, Fiz.’Tverd. Tela 10, 3602 (1968) [Sov. Phys.-Solid State

10, 2857 (1969)1.
(3] A'F. Andreev and I. M. Lifshitz, Zh. Eksp. Teor. Fiz. 56, 2057 (1969) [Sov. Phys.~JETP

29, 1107 (1969)].
(4] R. N. Gurzhi, ibid. b7, 1L15 (196h4) [20, 953 (1965)].

POSSIBILITY OF SUPPRESSING FLUTE INSTABILITY OF A DENSE PLASMA

V. V. Arsenin
Submitted 29 January 1970
ZhETF Pis. Red. 11, 267 - 269 (5 March 1970)

Experiments with a rarefied plasms using the "Ogra-2" and "Phoenix" apparatus [1, 2]
have confirmed the possibility, predicted in {3, 4], of suppressing flute instability in a
" plasma with the aid of a feedback system controling the field of the perturbation outside the
plasma. At the same time, experiments with "Phoenix" have shown that, owing to the dependence
of the transfer function & (see below) of a real high-frequency circuit on the freguency,
oscillations may build up (at sufficiently large §) at frequencies determined not by the
plasma but by the high-frequency system., The plasma instability proper can then be suppressed.
This possibility was not taken into account in the elementary theory [4]. The value of & re-
quired for stabilization by the method of [1, 4] increases with plasme density. Therefore,
when the system of [1, 4] is used to stabilize a dense plasma, the difficulty caused by the
appearance of an additional unstable solution becomes aggravated. It will be shown below that
oscillations of a dense plasma can be suppressed without exciting the system at the
"extraneous" frequencies, if one "measures" not the perturbation of the electric potential,
but the perturbation of the electron {(or ion) density. The transfer function of the equiva~
leit circuit responding to perturbation of the potential should depend on the fréquency like
[i] .

Let us examine the stability of a cylihder of collisionless plasma of radius & and
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