When H > Hc and in the case of carriers of the same sign,
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The sign of the change of the magnetic field in the presence of a radial current is
determined by the sign of the Hall constant, i.e., by the sign of the charge of the majority
carriers.
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The multiperipheral (MP) theory of inelastic processes, in which single~pion diagrams
are considered (see Fig. 1), is formulated [1, 2] within the framework of the Bethe-Salpeter
(BS) equation. In the multireggeon (MR) theory (3], which considers diagrems with exchange
of one vacuum reggeon (see Fig. 2), its analog is the equation of Chew, Goldberger, and Low
(caL) [4].

These theories describe inelastic processes that are different from each other, i.e.,
they are valid in different regions of the phase volume [5, 6]. For most processes, the
criteris of applicability of the MR theory are satisfied [5]. Recent papers (see [T, 8]),
however, contain phenomenological attempts to extend the applicability of the MR theory to the
entire phase volume by introducing "clusters" and exchange of "meson" reggeons (i.e., by re-
placing Fig., 2a with the diagrem of Fig. 2b with R # P).

We write down a single equation for the inelastic processes, which reduces to the BS
equation in most of the phase volume, reduces to an equation of the CGL type in the region of
applicability of the MR theory. Such an equation was considered in [9], but only for par-
ticular cases - the model of Amati et al. [10] and the completely reggeized model [4] (Fig. 2a),
which cannot pretend to describe the majority of the inelastic processes.

We denote by Al(pa’ pb) the imaginary part of the amplitude of 0° elastic scattering of
particles with momenta P, and 1 in the s-channel. We define [4] the function B as follows:

1
Aylpgy Py) = —— [d4k A (pyy ky) DXKT) B(kyipgs Py ) (1)

wd

This relation is valid both in the MP and in the MR, but in the former case Kl and Da are ine
terpreted as the imaginary part of the irreducible block of the amplitude of the elastic

scattering and the square of the pion propagator, and in the MR as the squares of the vertex
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Fig. 1. Multiperipheral diagram.

Fig. 2. a) Fully Reggeized diagram,
b) multireggeon diagram with pro-
duction of groups of particles.

P - vacuum reggeon.

Fig. 1 Fig. 2
part and of the signature factorl). In both cases the equation for B can be written in the
form I
Bk, po, py) =B + e S d4k,A (ky, ky) Dk ) Rkyo kyupg) Blky.kpupy ), (2)

where B = & (kl, pb)R (kl, Pgs pb)’ R is the Regge fautor, and the symbols for the momenta

are clear from Fig. 3 (at t = 0 we have k2 k k kﬁ, etec.)

According to usual rules, R must be chosen in the form

k)
Rl(.kgv kag) - Izasla( l), (3)
where
2 -
|z l Zklsa3
°3 ~ -
%a1513
is the cosine of the scattering engle in the t-channel, 8iy = (ki - kJ)z, S,: = (pa - ki)z,
and a(kz) is the exchange Regge trajectory.
However, it is sometimes chosen in the form
_ atk?)
R"(kanklapq) = (303 / so) ! y (h)
where 50 = const, We consider both cases.

In the BS equation, o« = 0 and R = 1. Therefore in the MP B does not depend on P In
the MP, both the kernel and the function itself depend only on two vectors, and therefore (1]
we can use an expansion in lLegendre polynomials, In the MR they depend on three vectors, and
this leads to the need [9] of dealing with d=-functions that are representations of the group
o(2, 1).

Generalizing the results of [9] (see formule (4.19) of [9]) to the case of an arbitrary

form of A, we can easily obtain from (2) an equation for the partial amplitudes bi at any t:

1 2 21/2
— S fdrdvl=t(t -4p%) +2tr -v*]  x
4n3t| n

by, k2, k3) =h +

1) ) &(p )2

N In the model {8, 9] of the diagram of Fig. 2a we have A1 = g (p . k
n°). The signature factor is so normalized that at pole it goes over ifito %he resonator,
apart from the phase.
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x ¢ BY(+, k3, kZ) D(K}) D*(K) (5)

in % r
= 2,k v)dt (=)
f {odz C(t oz, k3, k5.r,v) a; (k3. k2), a k3, k3) 4 ()
_ T
r=,-k23'.k:—2uz . _v=k42"k§- b£='fln'(' =0, v =0,a,=0). (1)

ai(ki, kg) = ai(ki) + ai(kg) (i denotes the concrete Regge trajectory). The explicit form of
the d-functions is written out in [9]. At t = O we have

z=(s, + k24 k2)/2vkd kY (8)

Zg is obtained from z at 513 = hua. The expressions for C and Catt=0 take the following

formz): in variant I see (3)

C, =Afsy. k3 k3 ); (9)
in variasnt II:

2a; (k3)
.

Cy = A‘l(su,kf,kg)(s“s13/2k§s°) (10)

Equation (5) makes it possible to replace the difficult problem of the exact equation
22) by the easier problem of finding the asymptotic forms of this solution by investigating
the analytic structure of the partial amplitudes in the cross-channel. We are particularly
interested in the existence of a solution of (2) with an asymptotically constant cross section.
In this case bi has a pole at the point 2(t) with 2(0) = 1. The existence condition for the
solution of (5) is the absence of such a pole from the kernel fiﬁ. Since the pole of‘fzn can
also not be located at £ > 1, it must be located at & < 1. —

To determine the position of the leading singularity of fj;n in the f-plane, it is

sufficient to consider the contribution made to the integral (6) by large values of z, i.e.,

s If the esymptotic behavior of the irreducible block is given in the form 51(513) nogY

13’ 13

as s13 + «, where v is a certain constent, then, using the asymptotic form (9] of the d-
functions
dt L@~ 1-2q,(k?))=tz-t-1,

LT n

we find that the position of the singularity is given by the integral: in the former case

§
(see (3), (9)) A i o

00 Ky . Ky

(L +1=-2a,(k2))=1 f dzz” 8! (11) t
e
and in the latter case (see (4), (10))

00 Ky K’

(£ +1-2a,(k2))"" [dzz -te (12) e "

Fig. 3. Shadow elastic scattering

2]y

n the expressions for C it is necessary to remove the superior bars from C and &; in
(9) and (10), ana bz is obtained accordingly by replacing C with C in (7).
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The condition for the existence of a sclution of (5) leads to the following requirement

in both cases

-1+ 24,k <1 (13)
and in addition, in the first case
v <l (1k)
and in the second case
v+ 2a,(k) <1 . (15)

These conditions explain why difficulties arose with the Pomeranchuk pole in the MP (11]
and in the MR {6, 4]. In the BS equation o = 0O and the conditions (14) and (15) are violated
at v =1, i.e., when the asymptotically constant cross section is chosen in the irreducible
block. In the CGL equation the conditions (1L) and (15) are not violated, owing to the §-

function form of A , but condition (13) is violated at the point Ko =0 if a;, is a vacuum pole

1
trajectory. The difficulty can be eliminated in three ways: 1) by excluding the point
k2 = 0 from consideration, stipulating that the constants of coupling of two vacuum reggeons

with the particle vanish at this point [6] (see the weak~coupling model [12]): 2) by re=-
quiring that the total cross section decrease (aP(O) < 1) [4]: 3) by essuming a wesker
singularity (than a pole) at £ = 1 [1l1].

We emphesize once more that the first case, which is most realistic, reduces to the
BS equation, since the integrand in (11) does not depend on o, .

Even in the second case, the difference between the MP and the MR drops out from Eq.
(5) obtained after integrating over the Treimen~Yang angle, since the dependence on s in

a3

(4) reduces to a dependence on the product s in (10), i.e., to a choice of definite form

s
al 13
factors in the vertices of the multiperipheral chain.
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