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The effect of flux guantization in hollow thin-wall superconducting cylin-~
ders [1 - 4] is connected with the occurrence of a circulating current J or,
what is the same, of a magnetic moment M = JS/c (S is the cross section of the
cylinder), varying periodically as a function of the magnetic field flux ¢. In
a preceding paper [5], the author has shown that a similar phenomenon takes
place also in the normal state of the superconductor at a temperature T > TC

when there 1s no long-range order. In the latter case, the effect 1is due to
"fluctuation pairing” of the electrons [6]. It will be shown in this paper that
the quantization of the flux is not connected with the presence of superconduct-
ing long-range order (of the ODLRO type [3]) and can occur under conditions when
the quantum size effect [7] appears in a perfectly normal metal as a consequence
of the sensitivity of the quantum states of the electron to the field of the
vector potential A (the so-called Aharonov-Bohm effect [81).

Let us consider a hollow thin-wall metallic cylinder
Lsee the figure) placed in a field with a vector potential
A, produced by a "pointlike" source of magnetic field (shown Ly éy
shaded in the figure), namely a narrow solenoid; the stray ¢%
field of which can be neglected. The coordinate x 1s meas-
ured along the perimeter of the ring (length of the perim-
eter L, = 2mR), y along the radius (wall thickness L,), and
z along the cylinder axis. Assuming L, to be small, we can
consider the vector potential in the region occupied by the
electrons to be constant, A = A_ = ¢/L, where ¢ is the flux produced by the sole-
noid. Solving Schrodinger's eqlation in the region shown in the figure, we
readily obftain the wave functions and the energy levels of the electron
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Using the expression (2) for the spectrum, we can easily calculate the free
energy F of the system
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We shall conslder for simplicity the case of sufficiently small thicknesses L,,
when the gquantum 1imit with respect to m is satisfied, so that it is possible to
take into account only the lowest level m = 1. From the condition of normaliza-
tion to the total number of particles, the chemical potential is
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(N is the electron density).
According to (2) and (3), the free energy depends on the total flux ¢ = L,A.
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Differentiating F with respect to ¢, we obtain the magnetic moment of the system
p (u = M/S):

= =7 /G,
which thus turns out to be different from zero. It 1s easy to see that u oscil-
lates as a function of the flux, with a period equal to the quantum ¢, = he/e,
which, naturally contains the single electron charge e. Using (2) - (4), we

obtain with the aid of the Poisson formula
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where the coefficlents “p are determined by the following formulas:

a) for degenerate statistics (g, >> T)
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b) for nondegenerate statistics (g, << T)
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Thus, owing to the quantization of the electron motion in_ the ring and to
the sensitivity of the quantum states to the vector potential A, a magnetic
moment B appears and oscillates as a function of the flux ¢. The presence of
such a moment is equivalent to the existence of a circular current in the ring,
but this is not the ordinary conduction current, but a "diamagnetic" current
analogous to that introduced for the interpretation of Landau diamagnetism (cf.,
e.g., [9]). Unlike superconductors, where the quantization of the flux is con-
nected with the cooperative motion of Cooper palrs, there 1s no long-range order
in this case. The motion of the individual electrons is independent, and the
collisions can cause the electrons to become redistributed among the states, but
the average current remains different from zero as a consequence of the depen-
dence of the energies of the individual states, and hence of the total energy,
on A. The current state corresponds 1in this case to a minimum of the free
energy, so that allowance for dissipation does not lead to its decay.

Just as in the calculation of the oscillating part of the Landau diamagnet-
ism, the role of scattering of the electron reduces in the present problem to a
smearing of the energy levels, and consequently to a decrease of the amplitude
of the oscillating terms in (5). Phenomenologically this can be taken into ac-
count by introducing the "Dingle factor" exp(-H/TAE), where AE is the distance
between levels and 1 is the free path time (which also takes into account the
diffuseness upon reflection from the walls). Summarizing, we can conclude that
the effect can be observed at sufficiently low temperatures (T << AE N'ﬁzko/m*Ll)
large mean free paths (& » L; = 27R), and high specularity of the reflecticn
(1 - p< Ly,/L,). It is difficult to satist these conditions in experiments,
even in the case of metals such as bismuth®).

1)Obser’vation of the effect is not necessarily predicated on a direct measure-
ment of M. Thus, the longitudinal conductivity of the cylinder is an oscillat-
ing function of the flux in the presence of a homogeneous fileld. This 1s analo-
gous to the Parks-Little effect [10], namely oscillations of the resistance on
the transition curves of a superconducting cylinder in a field.

276



We note that none of the foregoing contradicts the general theorems concern-
ing the connection between flux quantization and the presence of superconduct-
ing long-range order [3]. Formally, this effect is not a macroscopic quantum
effect, since in a large system (as R =+ «) the magnetic moment Y vanishes (see
(6) and (7)). It is more readily analogous to the diamagnetism of closed or-
ganic molecules. However, as shown by the foregoing estimates, when certain
conditions are satisfled, the effect can appear in samples of rather large di-
mensions, usually regarded as "macroscopic.”

In conclusion, I am deeply grateful to I.M. Lifshitz and M.I. Kaganov for
a discussion of this work and valuable advice. I am also grateful to B.L. Ver-
kin for interest in the work and for a discussion.
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It is known that in stationary electronlc configuration (the self-stabi-
lized Budker beam [1], Veksler rings [2]), a decrease of the Coulomb repulsion
pulses is attained with the aid of the Lorentz forces due to the contraction
of the currents of relativistic electrons. Since the limitation of the wave
amplitude in a plasma is connected with the action of Coulomb repulsion of the
electrons, the natural question arises whether it is possible to excite large-
amplitude currents by enhancing the foregoing compensation. Such a situation ob-
tains when wave propagate along the axis of an electron beam whose particles
rotate azimuthally (a system of the E-layer type [3]). In this case the charge-
density wave leads to oscillations of the particle current in the beam
j$ (z - vpht) = —even'(z - vpht) (v, 1s the azimuthal velocity of the beam), and

consequently to the appearance of the magnetic field of the wave, HP(Z - vpht).

the self-contraction force, produced by this magnetic field in the plasmoids in-
to which the wave breaks up the beam, FH = evoHr/c, just as in the stationary
case, is in anti-phase with the Coulomb force FE = -eEZ, and leads at v,

z (g2 - vl;h)l/2 to an appreciable decrease of the electron displacement in the

field of the wave. A wave can then propagate in the beam, having a very large
electric-field amplitude, without intersection of the trajectories and breaking
of the wave front. This result points to the possibility of effectively using
waves in relativistic beams to implement the plasma method of acceleration
proposed in [4].
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