We note that none of the foregoing contradicts the general theorems concern-
ing the connection between flux quantization and the presence of superconduct-
ing long-range order [3]. Formally, this effect is not a macroscopic quantum
effect, since in a large system (as R =+ «) the magnetic moment Y vanishes (see
(6) and (7)). It is more readily analogous to the diamagnetism of closed or-
ganic molecules. However, as shown by the foregoing estimates, when certain
conditions are satisfled, the effect can appear in samples of rather large di-
mensions, usually regarded as "macroscopic.”

In conclusion, I am deeply grateful to I.M. Lifshitz and M.I. Kaganov for
a discussion of this work and valuable advice. I am also grateful to B.L. Ver-
kin for interest in the work and for a discussion.
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It is known that in stationary electronlc configuration (the self-stabi-
lized Budker beam [1], Veksler rings [2]), a decrease of the Coulomb repulsion
pulses is attained with the aid of the Lorentz forces due to the contraction
of the currents of relativistic electrons. Since the limitation of the wave
amplitude in a plasma is connected with the action of Coulomb repulsion of the
electrons, the natural question arises whether it is possible to excite large-
amplitude currents by enhancing the foregoing compensation. Such a situation ob-
tains when wave propagate along the axis of an electron beam whose particles
rotate azimuthally (a system of the E-layer type [3]). In this case the charge-
density wave leads to oscillations of the particle current in the beam
j$ (z - vpht) = —even'(z - vpht) (v, 1s the azimuthal velocity of the beam), and

consequently to the appearance of the magnetic field of the wave, HP(Z - vpht).

the self-contraction force, produced by this magnetic field in the plasmoids in-
to which the wave breaks up the beam, FH = evoHr/c, just as in the stationary
case, is in anti-phase with the Coulomb force FE = -eEZ, and leads at v,

z (g2 - vl;h)l/2 to an appreciable decrease of the electron displacement in the

field of the wave. A wave can then propagate in the beam, having a very large
electric-field amplitude, without intersection of the trajectories and breaking
of the wave front. This result points to the possibility of effectively using
waves in relativistic beams to implement the plasma method of acceleration
proposed in [4].
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For simplicity, we consider in the present paper the case of rectangular
geometry, namely an electron beam moves along the y axis and i1s bounded in x.
The electron charge of the beam is assumed to be partially compensated by the
ions and at equilibrium the Coulomb repulsion force acting on the electrons,
—eEX, is balanced by the magnetic force evoHZ/c, where HZ(X) is the magnetic

field produced by the electron current. Equilibrium sclutions of this type were
considered in [1, 5].

The wave produced in such an electron beam can be described with the aid of
the usual hydrodynamic system of equations. All the wave quantities in these

equations depend on £ .= z - vpht, and the transverse gradients of these quanti-
ties are small compared with the longitudinal ones.
dinf dInf | (1)
~ k 1
df dx I a >>

(a - transverse beam dimension, k - wave number).
The equations of motion then have the following energy integral

&-v oA (2)

o y *

hp —&o + vo(py—p°)+e¢.-

In this e%uatlon A(E) and ¢(&) are the vector and scalar potentlals of the wave,
£ = (m*c® + c?p?)!/% is the electron energy, and &, = (m®c* + c¢?p2)!/? is the

equilibrium value of the energy at the point ¢ = 2 0.

The proper magnetic field HZ(X) of the beam current magnetizes the trans-

verse wave motions in the beam, since the cyclotron part of the electrons in

this field 1is Wy = a/c >> w,, and the frequency of the investigated oscilla-
Z
tions is w < w, (w9 = (Llﬂezno/myo)l/2 is the Langmuir frequency and vy, = &/me?).
Under these conditions
v, =p, =0, Vy T Vo s
v
]
Y (5 - = A)* pavin (3)
Py =72 &=P°1+ Y2l
é,
and the equation for the potential ¢(&) takes the form
d2 2 vV.y, W
¢ dren, i ph® -1}5 (4)
£2 2 _ 2
d¥£ < \f)zhyo \/w2c2_m2 4(c —vhyo)
€22 w22
r‘uew:mczi—eqf.——ph—i- .

Vo (e - vl

The solution (4) leads to the following nonlinear dispersion equation for the
wave under consideration:

c? 2y2 1 ™ 2
ka§h= 0l ST ( ) ) (5)
v;h)yo A+ VAZ-1 \ 2E(x)
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The wave number is k = 2n/ggwhere £ 1s the period
of ¢lE),

2

E 2 2
max -
A=1+ N pzhy"
4nn°8° y:‘:(cz- vgh)
Emax is the amplitude of the longitudinal field in the
wave E (&), k2 = 2(A% - 1)YV2/ + (A% - 1)1/2, and E(x)

1s a complete elliptical integral of the second kind.
It follows from (5) that two types of waves exist in
the electron beam (see the figure), fast waves with
Vph > ¢ (curve 1) and slow waves with a phase velo-

city in the range 0 < vph <ec/v, = (e? - V§)1/2
(curve 2). With increasing amplitude of the slow
wave, its frequency at a given k decreases, but the
limits within which the phase velocity of this wave

varies and the maximum value of the frequency W x

= W,/Y, do not change. The slow wave has appre-

W/K =C

w(K=cly,

Wy

“f%

Wyl "

Dispersion relations
w{k) for waves in an
azimuthal electron beam;
solid curves - small
amplitudes (A ~» 1),
dashed - maximum ampli-
tudes as determined by
Ea. (7)

ciable components along both the longitudinal (E”) and the transverse (E )

electric field,
determined by the relation

v

el

Etr .

Vph

and the connection between these components at vph = ¢/yY, is

(6)

The magnetic force acting in the longitudinal direction on the beam electrons

dA 2
e v
F = — v H :_iv Y = - °
H o' x o e
¢ < d¢ 2_ 2
[+ —vph
compensates in the case when v + (c?

ph

- V%)l/2 the Coulomb force Fp

de¢
d&

e(d¢/dg).

Under these conditions one can expect an appreciable increase of the maximum

possible value of the wave amplitude.
Indeed from Eq.

which "breaking" of the wave front takes place, E

(4) it is possible to obtain in the usual manner the fol-
lowing formula for the maximum amplitude of the longltudlnal electric field,

at

max max’

c
0< v, < )
( ph yo ¢
When w = (wo/Yo)lvph << c/y |, the amplitude E ..
, o
Emax max

2.3
o = n"mvp.h_yo << noéo .
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1/2
viy?
- =3
2

(7)

is sufficiently small

(8)



When vph approaches c¢/yY,, the amplitude EmaX max

bounded, since by virtue of condition (1) vph cannot be arbitrarily close to

increases rapidly, but remains

¢/Y,. Using this condition and the dispersion equation (5) we can obtain an

estimated upper bound for Emax max’

2 2,2
Emax max g W, 9 (9)
S N, [ c 2

Since w,a/c >> 1, the maximum energy of the electric field of the wave greatly
exceeds the beam energy.
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According to recent experiments performed at Serpukhov [1], there is an
unexpectedly large difference between the total cross sections of Kt and K-
mesons on protons and deuterons. This sltuation casts doubts on the validity
of the Pomeranchuk theorem [2]. Since the dispersion relations (d. r.) impose
strong limitations on the energy dependence of the real and imaginary parts of
the scattering amplitudes, 1t is possible to use the experimental information on
the phase shifts of the forward amplitudes at the energles attainable in con-
temporary accelerators, in order to clarify the character of the behavior of the
total cross sections at higher energies.

In [3] we used d.r. to predict the phase shifts of the amplitudes of K¥p
and K*n scattering and the amplitude of K’-meson regeneration on protons, as-
sumlng that the approximately-constant values of the total cross séctions, meas-
ured in Serpukhov [1], constitute the asymptotic values. Similar reasoning for
K*d scattering makes it possible to carry out an additional independent verifica-
tion of the Pomeranchuk theorem. Owing to the absence of models for the descrip-
tion of the amplitudes in the low-energy and asymptotic energy regions, the d.r.
for K*d scattering was not used before.

y The amplitudes £, = D, + iA, for K*d scattering forward satisfy the d.r.
L4] - - -

pt(m) = It((.)) + kz }“ d&)‘ [ 04((0 ) 0_(0)1) ] (l)

2 ’ + .
i © k SRR 0t o
. o

where all the quantities are expressed in the laboratory system. The terms I
contain unknown subtraction constants and dispersion integrals up to an energy
wy, = 0.79 GeV, above which the total cross sections o4+ are known from experi-
ment [4, 57. U31ng the available data up to 20 GeV for K*d and up to 55 GeV

1)University of Birmingham, England
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