3) If the weak turbulence is "quasirandom," then there is practically neither
diffusion nor heating. U) Our analysis does not apply to the results of quasi-
linear theory and the theory of strong turbulence.

The author is grateful to B.B. Kadomtsev for useful advice.
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Several experimental groups have recently observed an influence of the
supercon?ucting transition on the kinetics of plastic deformation of metals
[1 - 3¢ Since the properties of the crystal lattice remain practically un-
changed in a superconducting transition, 1t is natural to ascribe the observed
effect to the influence of conduction electrons. The possible mechanism of
such an influence is as follows. As 1s well known, the plastic properties of
crystal are determined in final analysis by the mobilities of the individual
dislocations. Kravchenko has shown earlier [4] that a dislocation moving in a
normal metal experiences a drag force caused by its interaction with the con-
duction electrons. This force has an appreciable magnitude and its wvariation,
expected in the case of the superconducting transition, can greatly influence’
the balance of forces that determine the dislocation mobility. In %this com-
munication we present results of an investigation of the force of electron drag
by dislocations in superconductors. It will be shown below that when the metfal
goes over from the normal to the superconducting state the character of the
variation of this force is not as simple as assumed earlier [4, 5], but reveals
a number of interesting features.

A dislocation moving with constant velocigy V Lproduces in a crystal an
alternating field of elastic deformations uy (r - Vt), which exerts on the

conductgon lectron a force determined by the deformation potential

Ainuin(r - Vt) (the components of the tensor xin are of the order of the Fermi
energy ep [6]). Because of this potential, a moving dislocatlion produces
transitions in the electron system and loses its energy to the perturbation of
this system. The dislocation retardation force due to such losses is equal in
absolute magnitude to the energy absorbed by the electrons when tne dislocation
moves on a unit path.

It can be shown that the Hamiltonian of the interaction between the elec-
trons and the moving dislocation has in the second-quantization representation
the form

1)The cited articles are not the only publications in which the influence of
the superconducting transition on plastic properties of metals is noted. We
have cited only the investigations in which, in our opinion, the effect is
most clearly pronounced.

379



ﬂ 1 T t, 4 +
= q s
int Lle f > )‘in in® (°k+ qf“kf"'“ko q;“kﬁ)
(1)

0= qV.

9 15 the Fourier component of the deformation fileld, the wave vec-

Here u:
in

tor q lies in the plane perpendicular to the dislocation axis, L, and L, are
the dimensions of the c¢rystal in this plane, kf and a, 4 are the operators of

creation and annihilation of electrons with appropriate spin direction. Chang—
ing over in the standard manner to the elementary-excitation operators Yk¢ and

and Yic4 of the superconductor (we use the notation of [7]), we obtain

1 -l #
int> [ L. P> '\tn":n 1

. +
T Hog + g% = Vi + @' ) 0k 4 gpig®

(2)

* +
Yk qn’u) + (U q¥k T Vi s q”k)(ykﬂu Yokttt Yok~ g qu) |5

The largest contribution to the retardation force is made by transitions caused
by waves with the maximum values g ™ Qs 9y ™ 1/r, if 1/ry < ZKF, or q v 2kp

in the opposite case, ry; is the radius of the dislocation nucleus, and ZMF is
the diameter of the Fermi surface. Since ry, l/2kF Vvog << & (£ is the mean

free path of the electrons, a is the lattice constant), it follows that the
energy absorbed by the electrons can be calculated by assuming equilibrium oc-
cupation numbers of the elementary excitations [6, 8, 92. The retardation
force per unit length of dislocation F(V) 1s defined by the expression

1
FV) = —— 3 2 hogyv .
L3V T k Q¥ksk+ g (3)
Here L, is the dislocation length, and Vik! is the frequency of the transitions
with absorption of energy-hwk, R calculated by perturbation theory with the

matrix elements of the Hamiltonian (2) and with occupation numbers f(e )
[1 + exp(ey /)]t

A k'~ k| 2

inYin

kai - ——

" 2(upruy = vy vy )2 U(ey ) = Fley ) 180ey o~ e~bop s )+

L,

+(Uklvk +kauk)2[1 -—f(fk) - f((kl) ][B(Ek’ +€k -ﬁwk;_ k) -

(%)

-a(Ck‘+ (/" +‘h(i)k’_ k)] .

: We confine ourselves henceforth, for simplicity, to the case of screw dis-
location, for which

N A3y - A9y (5)
in uln = ib “‘q—"“"‘z ’
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if the "3" axis is directed along the velocity V of the dislocation; b is. the
magnitude of the Burgers vector.

Substituting (4) and (5) in (3), changing over from summation to integra-
tion, and recognizing that waves with q << kF make an insignificant contribu-

tion to the drag force F(V), we obtain:

mzl:oz{\2 tq,V de’ o (e’ +¢) =A2
F(v) = ) 2 .r - f de - X
3wohe ° ¢ A Ve -A? (e +e)2-A
- RV . - A . 2
% {f(e) - f(e’ + )1+ O(fiq, V- 2A) de” I ode ele’=e) +A .
2A € A ‘ Vtz__AZ"/("_‘)z_ Az‘

x [1-ffe) - Fe" - )]},
(6)
1, x>0,

A(x) = .
(x) 0, x <0,

where A2 = A}; + 222, and m is the electron mass.

Without dwelling here on a detailed analysis of (6), we write out expres-
sions for F(V) in a number of 1limiting cases.

At absolute zero temperature (T = 0, A = A,)
mth 2 \2 hq, Vv de’ e~ A ee’ —¢)+A3

Ipd ! ; J e
3n 'h_ 2A° € Ao

(7)

F(V) = 0(hq, V - 24,)

Vea-AZ (e ~e)2- A"
We see therefore that the force of the electron retardation is equal to
zero at dislocation velocities V < VCP = 2Ao/ﬁqm. When V > Vcr’ the drag force

differs from zero, and if V - VCr << Vcr’ we have in order of magnitude

nep b2q
F(V) » ————(V-V,.),
4v’_.

(8)

where n 1s the denslty of the electrons in a normal metal and Vo is the Fermi

velocity. The appearance of the critical velocity is the consequence of the
existence of a gap in the energy spectrum of the superconductor, and has the
same nature as threshold absorption of the electromagnetic [10] and acoustic
[8] energy by a superconductor. The critical velocity is of the order of
VF/pqm, where p is the radius of the Cooper pair (p v 10-* cm), i.e., it is

smaller by one order of magnitude than the veloeity of sound, and is therefore
attainable experimentally. At velocities larger in comparison with Vcr’ the

electron drag force in the superconductor is of the same order as that calcu-
lated in [4] for a normal metal.
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If T # 0, but T << A and V < Vcr’ we have

[ negb? ~A/T
2 m o, / v, hq,V << T<< A
" (9)
F(V) ~ \ *
anb — A
= TN v "V, 2A> Bg V>>T
rrhVF m

Attention must be called to the fact that F(V) becomes nonllnear at suf-
ficiently high velocities.

Formulas (6) - (9) show that the force of the electron drag by disloca-
tions in a superconductor has a complicated dependence on the velocity and on
the temperature.

We take the opportunity to thank V.P. Galaiko, V.L. Pokrovskii, and V.Ya.
Kravchenko for useful discussions of the results of the work, and also V.B.
Fiks, with whom problems close to those touched upon in the present communica-
tion were discussed.
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A method is proposed for describing a superconductor in the case when the
Cooper pairs can form several condensates, 1.e., they can accumulate in several
different states. This problem is meaningful in the presence of degeneracy of
the ground state of the Cooper pair, as is the case 1n a superconductor of the
second kind in a magnetic field.

The starting point is the Ginzburg-Landau theory [1]. 1In this theory, the
free energy is
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