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Fig. 2. Pressure depen-
derice of the positions
of the singularities of
the germanium lattice
vibration spectrum. The
numbers on the TA curve
show the sequence of the
experiments.
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thermal expansion also causes a shift of the lat-
tice vibration frequenciles. For germanium, the
corresponding neutron-diffraction measurements
were made in the interval 100 - 700°K [13]. For
all the vibration modes, (Blnw/aT)P = (-7.5 = 0.8)

x 10~% deg-!, which is much higher than the value
d 1nw/dT that can be caleulated from the obtained
values of (d 1nw/dP)T and the coefficlent of

thermal expansion. This contradiction can be

eliminated by assuming that germanium is subject
to an appreciable change of w as a result of the
contribution from the phonon-phonon interaction
(see [U41). The values of (Blnw/aT)V calculated

from our data and from E13] are -11 x 107°,

-7 x 10~%, and -5 x 10~° deg~! for TA, LA, and
TO, RO singularities, respectively. Observation
of a large value of (Blnw/BT)V and the compli-

cated character of the shift of the spectrum under
pressure are undoubtedly of interest. It is ob-
vious that the lattice-vibration spectrum of the
germanium and of similar substances deserves
further study.

The author is indebted to P.L. Kapitza for
interest, to A.N. Voronovskii for collaboration
in the work on pressure, and to N.N. Holonyak and
V.I. Fistul! for supplying the samples of doped
germanium used to prepare the dilodes.
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ELECTRON SHOCK WAVES IN A COLLISIONLESS PLASMA
A.A. Ivanov, V.D. Rusanov, and R.Z. Sagdeev

Submitted 4 May 1970

ZhETF Pis. Red. 12, No. 1, 29 - 31 (5 July 1970)

Attention was called recently to the fact that the spreading of a bunch
of hot electrons in a collisionless plasma can be strongly retarded by collec-

tive effects [1].
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At high hot-electron densitles, the main role is played by the following
processes: The spreading of the cloud of hot electrons should be accompanied
by an opposing current of hot electrons, so as to cancel out the charge, since
the ions do not have time to move [2]. In this case the cold electrons can be
slowed down by the effect of anomalous resistance.

It can be shown that under these conditions the spreading of fhe bunch of
hot electrons can lead to the formation of a stationary moving Jump of the den-
sity of the hot electrons. The conditions on this jump can be obtained from
the conservation laws, just as for a shock wave.

The motion of the cold electrons in the electric field produced by the
hot ones will be described just as in the theory of anomalous resistances. TFor
not too large values of the elecfric field, the current velocity is u = ac,

(cS - velocity of ion sound, o - a constant that depends on the detailed forms
of the ilon and electron distribution functions, for which we assume the asymp-
totic value o = (m/M)/* [3]1).

The temperature of the cold electrons varies in accord with the equation

9 dT
—_ * e X v
2 dt ax
This yields for the current velocity
M dv 0d
3—’ = —— l
2 dr e (1)

The density of the cold electrons n, is determined from the continuity equation

d n,
ot

3 ;:(nx U) = ﬂ.

For the density of the hot electrons, which is much lower than the plasma den-
sity, we can obtain, by using the quasineutrality condition, the equations:

any dv
= N 3
at ° Ix
®  rmv? (2)
o= A - es)dv.

Eliminating u from (1) and (2) we obtain the nonlinear wave equation

a ( t'.?l‘lh aé) eal 32¢ <3)
- =n »
at \ doé 5t ° 3M  9x?

describing the'spreading of the cloud of hot electrons. The "§ognd velocity"
corresponding to Eq. (3) is of the form [(eaz/SM)no‘l(d¢/dnh)] /2 and the
analog of the Riemann solution is

lea? 1 de \
- - — et 4 .
s=a(x -V 3y n, dny J*
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When d(d¢/dnh)/dnh >0 or dznh/dzb2 < 0, the slope of the wave front increases
without limit.

Leaving aside for the time being the question of the width of the sta-
tionary "shock" wave, let us determine the velocity of this wave. From (1) and
(2) we can obtain the conservation laws and the veloclity of the jump

R 2
m n, mv, (Ll)
D avo\/ ey ._;_ » 5 = e(bmux .

oh

Here v, 1s the maximum velocity of the particles for the given dlstrlbutlon
function.

The lower bound of the width of the jump, (M/m)l/zrde,

stipulating that the spectrum of the ion-acoustic oscillations have time to be-
come established within the jump.

can be obtained by

As already noted, the condition for the formation of the "shock wave" im-
poses limitations on the n(¢) dependence, which is determined from the velocity
distribution functions of the hot particles. Thus, for example, for a Max-
wellian distribution d(d¢/dnh)/dnh < 0 no stationary wave is formed, and the

front spreads out in accordance with the self-similar solution (x/t). TFor dis-
tribution functions having a steeper decrease (for example, for a Mazwellian
distribution in the form of a step), we have

<@

mvZ g2 3ny
nh~ ed+ ) ) , ——5?

and a discontinuity is formed. In the general case, the distribution functions
can lead to a complicated n(¢) dependence, when both steepening and spreading
can occur on different sections of the front. In principle, the shape of the
front can yield information concerning the form of the distribution function
of the hot electrons. Thus, the propagation of heat in a collisionless plasma
will be realized by the foregoing mechanism and can be accompanied by the for-
mation of a wave with a steep front. A similar effect may turn out to be quite
important for plasma heating by a powerful relativistic beam.
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Considerable progress was made recently in the study of the N-point Vene-
ziano amplitudes BN. Mandelstam [1] and Olesen [2, 3] have shown that BN can

be factored if the intersections of the Regge trajectories depend bilinearly
on the additive "quantum numbers" bi of the external particles.
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